STM32MP157驱动开发——按键驱动(POLL 机制)

文章目录

  • “POLL ”机制:
  • APP执行过程
  • 驱动使用的函数
  • 应用使用的函数
    • pollfd结构体
    • poll函数
    • 事件类型
    • 实现原理
  • poll方式的按键驱动程序(stm32mp157)
    • gpio_key_drv.c
    • button_test.c
    • Makefile
    • 修改设备树文件
    • 编译测试

“POLL ”机制:

使用休眠-唤醒的方式等待某个事件发生时,有一个缺点:等待的时间可能很久。我们可以加上一个超时时间,这时就可以使用 poll 机制。

  • ① APP 不知道驱动程序中是否有数据,可以先调用 poll 函数查询一下,poll 函数可以传入超时时间;
  • ② APP 进入内核态,调用到驱动程序的 poll 函数,如果有数据的话立刻返回
  • ③ 如果发现没有数据时就休眠一段时间;
  • ④ 当有数据时,比如当按下按键时,驱动程序的中断服务程序被调用,它会记录数据、唤醒 APP;
  • ⑤ 当超时时间到了之后,内核也会唤醒 APP;
  • ⑥ APP 根据 poll 函数的返回值就可以知道是否有数据,如果有数据就调用read 得到数据。

会调用两次poll函数

APP执行过程

在这里插入图片描述

从③开始看。假设一开始无按键数据但后面有按键中断:

  • ③PP 调用 poll 之后,进入内核态;
  • ④致驱动程序的 drv_poll 被调用;【把线程放入wq,但未想休眠,返回event状态】
  • ⑤当前没有数据,则休眠一会;【在内核中休眠,而不是在驱动中休眠】
  • ⑥过程中,按下了按键,发生了中断;【在中断服务程序里记录了按键值,并且从 wq 中把线程唤醒了】
  • ⑦从休眠中被唤醒,继续执行 for 循环,再次调用 drv_poll:【drv_poll 返回数据状态】
  • ⑧如果有数据,则从内核态返回到应用态
  • ⑨APP 调用 read 函数读数据

如果一直没有数据,流程如下:

  • ③ APP 调用 poll 之后,进入内核态;
  • ④ 导致驱动程序的 drv_poll 被调用:
  • ⑤ 假设当前没有数据,则休眠一会;
  • ⑥ 在休眠过程中,一直没有按下了按键,超时时间到:内核把这个线程唤醒;
  • ⑦ 线程从休眠中被唤醒,继续执行 for 循环,再次调用 drv_poll:drv_poll 返回数据状态
  • ⑧ 虽然没有数据,但是超时时间到了,则从内核态返回到应用态
  • ⑨ APP 不能调用 read 函数读数据

注意几点:

  • drv_poll 要把线程挂入队列 wq,但是并不是在 drv_poll 中进入休眠,而是在调用 drv_poll 之后休眠
  • drv_poll 要返回数据状态
  • APP 调用一次 poll,有可能会导致 drv_poll 被调用 2 次
  • 线程被唤醒的原因有 2:中断发生了去队列 wq 中把它唤醒,超时时间到了内核把它唤醒
    -APP 要判断 poll 返回的原因:判断是有数据,还是超时。有数据时再去调用 read函数。

驱动使用的函数

使用 poll 机制时,驱动程序的核心就是提供对应的 drv_poll 函数。在drv_poll 函数中要做 2 件事:

① 把当前线程挂入队列 wq:poll_wait

  • a) APP 调用一次 poll,可能导致 drv_poll 被调用 2 次,但是我们并不需要把当前线程挂入队列 2 次。
  • b) 可以使用内核的函数 poll_wait 把线程挂入队列,如果线程已经在队列里了,它就不会再次挂入。

② 返回设备状态:
APP 调用 poll 函数时,有可能是查询“有没有数据可以读”:POLLIN,也有可能是查询“你有没有空间给我写数据”:POLLOUT

所以 drv_poll 要返回自己的当前状态:(POLLIN | POLLRDNORM) 或 (POLLOUT | POLLWRNORM)

  • a) POLLRDNORM 等同于 POLLIN,为了兼容某些 APP 把它们一起返回。
  • b) POLLWRNORM 等同于 POLLOUT ,为了兼容某些 APP 把它们一起返回。

APP 调用 poll 后,很有可能会休眠。对应的,在按键驱动的中断服务程序中,也要有唤醒操作。驱动程序中 poll 的代码如下:

static unsigned int gpio_key_drv_poll(struct file *fp, poll_table * wait)
{printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);poll_wait(fp, &gpio_key_wait, wait);return is_key_buf_empty() ? 0 : POLLIN | POLLRDNORM;
}

应用使用的函数

APP 可以调用 poll 或 select 函数,这 2 个函数的作用是一样的。poll/select 函数可以监测多个文件,可以监测多种事件:

pollfd结构体

struct pollfd
{int fd; short events;//等待发生的事件类型short revents; //检测之后返回的事件,当某个文件描述符有变化时,值就不为空
}

poll函数

#include <poll.h>
int poll(struct pollfd* fds, nfds_t nfds, int timeout);

参数说明:

  • fds 是一个struct pollfd类型的指针,用于存放需要检测其状态的socket描述符
  • nfds 是nfd_t类型的参数,用于标记fds数组中结构体元素的数量
  • timeout 没有接受事件时等待的事件,单位毫秒,若值为-1,则永远不会超时

poll机制会判断fds中的文件是否满足条件,如果休眠时间内条件满足则会唤醒进程;超过休眠时间,条件一直不满足则自动唤醒。

  • 返回值>0:fds中准备好读写,或出错状态的那些socket描述符;
  • 返回值=0:fds中没有socket描述符需要读写或出错;此时poll超时,时长为timeout;
  • 返回值=-1:调用失败。

事件类型

事件类型说明
POLLIN有数据可读
POLLRDNORM等同于 POLLIN
POLLRDBANDPriority band data can be read,有优先级较较高的“band data”可读Linux 系统中很少使用这个事件
POLLPRI高优先级数据可读
POLLOUT可以写数据
POLLWRNORM等同于 POLLOUT
POLLWRBANDPriority data may be written
POLLERR发生了错误
POLLHUP挂起
POLLNVAL无效的请求,一般是 fd 未 open

实例:

struct pollfd fds[1];
int timeout_ms = 5000;
int ret;fds[0].fd = fd;
fds[0].events = POLLIN;ret = poll(fds, 1, timeout_ms);//返回就绪事件的个数
if ((ret == 1) && (fds[0].revents == POLLIN))
{read(fd, &val, 4);printf("get button : 0x%x\n", val);
}

实现原理

内核将用户的fds结构体数组拷贝到内核中。当有事件发生时,再将所有事件都返回到fds结构体数组中,poll只返回已就绪事件的个数,所以用户要操作就绪事件就要用轮询的方法。

poll方式的按键驱动程序(stm32mp157)

相比于休眠唤醒的程序,只需要调用在file_operations 结构体里面添加poll函数,使用 poll 机制时,驱动程序的核心就是提供对应的 drv_poll 函数。在drv_poll 函数中要做 2 件事:一个是挂入队列,一个是返回状态

gpio_key_drv.c

#include <linux/module.h>
#include <linux/poll.h>#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/slab.h>struct gpio_key{int gpio;struct gpio_desc *gpiod;int flag;int irq;
} ;static struct gpio_key *gpio_keys_first;/* 主设备号                                                                 */
static int major = 0;
static struct class *gpio_key_class;/* 环形缓冲区 */
#define BUF_LEN 128
static int g_keys[BUF_LEN];
static int r, w;#define NEXT_POS(x) ((x+1) % BUF_LEN)static int is_key_buf_empty(void)
{return (r == w);
}static int is_key_buf_full(void)
{return (r == NEXT_POS(w));
}static void put_key(int key)
{if (!is_key_buf_full()){g_keys[w] = key;w = NEXT_POS(w);}
}static int get_key(void)
{int key = 0;if (!is_key_buf_empty()){key = g_keys[r];r = NEXT_POS(r);}return key;
}static DECLARE_WAIT_QUEUE_HEAD(gpio_key_wait);/* 实现对应的open/read/write等函数,填入file_operations结构体                   */
static ssize_t gpio_key_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{//printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);int err;int key;wait_event_interruptible(gpio_key_wait, !is_key_buf_empty());key = get_key();err = copy_to_user(buf, &key, 4);return 4;
}static unsigned int gpio_key_drv_poll(struct file *fp, poll_table * wait)
{printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);//内核会打印该函数两次poll_wait(fp, &gpio_key_wait, wait);//挂入队列return is_key_buf_empty() ? 0 : POLLIN | POLLRDNORM;//返回状态
}/* 定义自己的file_operations结构体                                              */
static struct file_operations gpio_key_drv = {.owner	 = THIS_MODULE,.read    = gpio_key_drv_read,.poll    = gpio_key_drv_poll,
};static irqreturn_t gpio_key_isr(int irq, void *dev_id)
{struct gpio_key *gpio_key = dev_id;int val;int key;val = gpiod_get_value(gpio_key->gpiod);printk("key %d %d\n", gpio_key->gpio, val);key = (gpio_key->gpio << 8) | val;put_key(key);wake_up_interruptible(&gpio_key_wait);return IRQ_HANDLED;
}/* 1. 从platform_device获得GPIO* 2. gpio=>irq* 3. request_irq*/
static int gpio_key_probe(struct platform_device *pdev)
{int err;struct device_node *node = pdev->dev.of_node;int count;int i;enum of_gpio_flags flag;printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);count = of_gpio_count(node);if (!count){printk("%s %s line %d, there isn't any gpio available\n", __FILE__, __FUNCTION__, __LINE__);return -1;}gpio_keys_first = kzalloc(sizeof(struct gpio_key) * count, GFP_KERNEL);for (i = 0; i < count; i++){gpio_keys_first[i].gpio = of_get_gpio_flags(node, i, &flag);if (gpio_keys_first[i].gpio < 0){printk("%s %s line %d, of_get_gpio_flags fail\n", __FILE__, __FUNCTION__, __LINE__);return -1;}gpio_keys_first[i].gpiod = gpio_to_desc(gpio_keys_first[i].gpio);gpio_keys_first[i].flag = flag & OF_GPIO_ACTIVE_LOW;gpio_keys_first[i].irq  = gpio_to_irq(gpio_keys_first[i].gpio);}for (i = 0; i < count; i++){err = request_irq(gpio_keys_first[i].irq, gpio_key_isr, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "my_gpio_key", &gpio_keys_first[i]);}/* 注册file_operations 	*/major = register_chrdev(0, "my_gpio_key", &gpio_key_drv);  /* /dev/gpio_key */gpio_key_class = class_create(THIS_MODULE, "my_gpio_key_class");if (IS_ERR(gpio_key_class)) {printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);unregister_chrdev(major, "my_gpio_key");return PTR_ERR(gpio_key_class);}device_create(gpio_key_class, NULL, MKDEV(major, 0), NULL, "my_gpio_key"); /* /dev/my_gpio_key */return 0;}static int gpio_key_remove(struct platform_device *pdev)
{//int err;struct device_node *node = pdev->dev.of_node;int count;int i;device_destroy(gpio_key_class, MKDEV(major, 0));class_destroy(gpio_key_class);unregister_chrdev(major, "my_gpio_key");count = of_gpio_count(node);for (i = 0; i < count; i++){free_irq(gpio_keys_first[i].irq, &gpio_keys_first[i]);}kfree(gpio_keys_first);return 0;
}static const struct of_device_id my_keys[] = {{ .compatible = "first_key,gpio_key" },{ },
};/* 1. 定义platform_driver */
static struct platform_driver gpio_keys_driver = {.probe      = gpio_key_probe,.remove     = gpio_key_remove,.driver     = {.name   = "my_gpio_key",.of_match_table = my_keys,},
};/* 2. 在入口函数注册platform_driver */
static int __init gpio_key_init(void)
{int err;printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);err = platform_driver_register(&gpio_keys_driver); return err;
}/* 3. 有入口函数就应该有出口函数:卸载驱动程序时,就会去调用这个出口函数*     卸载platform_driver*/
static void __exit gpio_key_exit(void)
{printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);platform_driver_unregister(&gpio_keys_driver);
}/* 7. 其他完善:提供设备信息,自动创建设备节点                                     */module_init(gpio_key_init);
module_exit(gpio_key_exit);MODULE_LICENSE("GPL");

button_test.c


#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <poll.h>/** ./button_test /dev/my_gpio_key**/
int main(int argc, char **argv)
{int fd;int val;struct pollfd fds[1];int timeout_ms = 5000;//5s之后返回打印驱动函数drv_poll的信息int ret;/* 1. 判断参数 */if (argc != 2) {printf("Usage: %s <dev>\n", argv[0]);return -1;}/* 2. 打开文件 */fd = open(argv[1], O_RDWR);if (fd == -1){printf("can not open file %s\n", argv[1]);return -1;}fds[0].fd = fd;fds[0].events = POLLIN;while (1){/* 3. 读文件 */ret = poll(fds, 1, timeout_ms);if ((ret == 1) && (fds[0].revents & POLLIN)){read(fd, &val, 4);printf("get button : 0x%x\n", val);}else{printf("timeout\n");}}close(fd);return 0;
}

Makefile

# 1. 使用不同的开发板内核时, 一定要修改KERN_DIR
# 2. KERN_DIR中的内核要事先配置、编译, 为了能编译内核, 要先设置下列环境变量:
# 2.1 ARCH,          比如: export ARCH=arm64
# 2.2 CROSS_COMPILE, 比如: export CROSS_COMPILE=aarch64-linux-gnu-
# 2.3 PATH,          比如: export PATH=$PATH:/home/book/100ask_roc-rk3399-pc/ToolChain-6.3.1/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin 
# 注意: 不同的开发板不同的编译器上述3个环境变量不一定相同,
#       请参考各开发板的高级用户使用手册KERN_DIR =   /home/book/100ask_stm32mp157_pro-sdk/Linux-5.4all:make -C $(KERN_DIR) M=`pwd` modules $(CROSS_COMPILE)gcc -o button_test button_test.c
clean:make -C $(KERN_DIR) M=`pwd` modules cleanrm -rf modules.order  button_test# 参考内核源码drivers/char/ipmi/Makefile
# 要想把a.c, b.c编译成ab.ko, 可以这样指定:
# ab-y := a.o b.o
# obj-m += ab.oobj-m += gpio_key_drv.o

修改设备树文件

在这里插入图片描述
对于一个引脚要用作中断时,

  • a) 要通过 PinCtrl 把它设置为 GPIO 功能;【ST 公司对于 STM32MP157 系列芯片,GPIO 为默认模式 不需要再进行配置Pinctrl 信息】
  • b) 表明自身:是哪一个 GPIO 模块里的哪一个引脚【修改设备树】

打开内核的设备树文件:arch/arm/boot/dts/stm32mp157c-100ask-512d-lcd-v1.dts

gpio_keys_first {compatible = "first_key,gpio_key";gpios = <&gpiog 3 GPIO_ACTIVE_LOW&gpiog 2 GPIO_ACTIVE_LOW>;
};

与此同时,需要把用到引脚的节点禁用

注意,如果其他设备树文件也用到该节点,需要设置属性为disabled状态,在arch/arm/boot/dts目录下执行如下指令查找哪些设备树用到该节点

grep "&gpiog" * -nr

如果用到该节点,需要添加属性去屏蔽:

status = "disabled"; 

在这里插入图片描述

编译测试

首先要设置 ARCH、CROSS_COMPILE、PATH 这三个环境变量后,进入 ubuntu 上板子内核源码的目录,在Linux内核源码根目录下,执行如下命令即可编译 dtb 文件:

make dtbs V=1

编译好的文件在路径由DTC指定,移植设备树到开发板的共享文件夹中,先保存源文件,然后覆盖源文件,重启后会挂载新的设备树,进入该目录查看是否有新添加的设备节点

cd /sys/firmware/devicetree/base 

编译驱动程序,在Makefile文件目录下执行make指令,此时,目录下有编译好的内核模块gpio_key_drv.ko和可执行文件button_test文件移植到开发板上

确定一下烧录系统:cat /proc/mounts,查看boot分区挂载的位置,将其重新挂载在boot分区:mount /dev/mmcblk2p2 /boot,然后将共享文件夹里面的设备树文件拷贝到boot目录下,这样的话设备树文件就在boot目录下

cp /mnt/stm32mp157c-100ask-512d-lcd-v1.dtb /boot

重启后挂载,运行

insmod -f gpio_key_drv.ko // 强制安装驱动程序
ls /dev/my_gpio_key
./button_test /dev/my_gpio_key & //后台运行,此时prink函数打印的内容看不到

然后按下按键

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/7948.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL主从复制、读写分离

目录 一、MySQL的复制类型 二、MySQL主从复制工作流程 三、MySQL的同步方式 1、异步复制&#xff08;Async Replication&#xff09; 2、同步复制&#xff08;sync Replication&#xff09; 3、半同步复制&#xff08;Async Replication&#xff09; 四、MySQL应用场景 …

TCP/IP 五层协议模型

转载大佬文章 我们每天使用互联网&#xff0c;本质上是在传输/接收各种数据&#xff0c;具体如何传输则是按照一系列互联网协议进行的。我们常说的网络七层模型&#xff0c;五层模型&#xff0c;四层模型都是对数据传输过程做了细化的分层。 按照五层模型比较好理解&#xff0c…

操作系统启动相关概念(BIOS、MBR、GPT、BRUB)

不管是 Windows 还是 Linux 操作系统&#xff0c;底层设备一般均为物理硬件&#xff0c;操作系统启动之前会对硬件进行检测&#xff0c;然后硬盘引导启动操作系统&#xff0c;如下为操作系统启动相关的各个概念。 一、BIOS 基本输入输出系统&#xff08;Basic Input Output Sy…

基于Java+SpringBoot+vue前后端分离校园周边美食探索分享平台设计实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

opencv-19 图像色彩空间转换函数cv2.cvtColor()

cv2.cvtColor() 函数是 OpenCV 中用于图像颜色空间转换的函数。它允许你将图像从一个色彩空间转换为另一个色彩空间。在 Python 中&#xff0c;你可以使用这个函数来实现不同色彩空间之间的转换。 函数的基本语法为&#xff1a; cv2.cvtColor(src, code[, dst[, dstCn]])参数…

leetcode5. 最长回文子串(Manacher - java)

Manacher回文算法 leetcode5. 最长回文子串Manacher 算法 manacher 算法 leetcode5. 最长回文子串 给你一个字符串 s&#xff0c;找到 s 中最长的回文子串。 如果字符串的反序与原始字符串相同&#xff0c;则该字符串称为回文字符串。 示例 1&#xff1a; 输入&#xff1a;s “…

搭建关键字驱动自动化测试框架

前言 上篇文章我们已经了解到了数据驱动自动化测试框架是如何构建和驱动测试的&#xff01;那么这篇文章我们将了解关键字驱动测试又是如何驱动自动化测试完成整个测试过程的。关键字驱动框架是一种功能自动化测试框架&#xff0c;它也被称为表格驱动测试或者基于动作字的测试…

Windows10 下 Neo4j1.5.8 安装教程

前言 Neo4j 是一个高性能的、NOSQL 图形数据库&#xff0c;它将结构化数据存储在网络上而不是表中。基于磁盘的、具备完全的事务特性的 Java 持久化引擎&#xff0c;这里就不把他和常用关系型数据库做对比了。因为篇幅有限&#xff0c;我这里也是第一次使用&#xff0c;所以以…

elasticsearch报错问题

标题1.报错问题 标题2.新建一个配置类 package cn.itcast.hotel.config;import org.apache.http.HttpHost; import org.apache.http.client.config.RequestConfig; import org.elasticsearch.client.RestClient; import org.elasticsearch.client.RestClientBuilder; import o…

【Linux】Tcp协议的通讯流程,浅谈三次握手四次挥手

文章目录 Tcp协议的通讯流程一、协议定制与网络版计算器的实现二、json的使用总结 Tcp协议的通讯流程 上一篇文章我们讲解了如何实现Tcp服务器&#xff0c;Tcp的接口也用了&#xff0c;下面我们就看一下Tcp协议的通讯流程&#xff1a; 在服务端&#xff0c;我们首先要创建一个…

电脑C盘空间大小调整 --- 扩容(扩大/缩小)--磁盘分区大小调整/移动

概述&#xff1a; 此方法适合C盘右边没有可分配空间&#xff08;空闲空间&#xff09;的情况&#xff0c;D盘有数据不方便删除D盘分区的情况下&#xff0c;可以使用傲梅分区助手软件进行跨分区调整分区大小&#xff0c;不会损坏数据。反之可直接使用系统的磁盘管理工具进行调整…

Flutter学习—— Vscode创建项目

目录 一、Vscode创建项目 二、补充五种项目类型 Application: Module 模块开发&#xff0c; Package开发 Plugin 插件开发 Skeleton 骨架开发 一、Vscode创建项目 1.快捷键 CtrlShiftP 打开命令面板&#xff0c;选择新项目 2.选择需要开发的项目类型 Application 应用开…

Tomcat 的使用(图文教学)

Tomcat 的使用&#xff08;图文教学&#xff09; 前言一、什么是Tomcat&#xff1f;二、Tomcat 服务器和 Servlet 版本的对应关系三、Tomcat 的使用1、安装2、目录介绍3、如何启动4、Tomcat 的停止5、如何修改 Tomcat 的端口号6、如何部暑 web 工程到 Tomcat 中6.1 方式一6.2 …

红队打靶:Nullbyte打靶思路详解(vulnhub)

目录 写在开头 第一步&#xff1a;主机发现与端口扫描 第二步&#xff1a;Web渗透 第三步&#xff1a;hydra密码爆破 第四步&#xff1a;SQL注入大赏 方法一&#xff1a;手工SQL注入之联合查询 方法二&#xff1a;SQL注入写入一句话木马 方法三&#xff1a;SQL注入写入…

C语言学习笔记 VScode设置C环境-06

目录 一、下载vscode软件 二、安装minGW软件 三、VS Code安装C/C插件 3.1 搜索并安装C/C插件 3.2 配置C/C环境 总结 一、下载vscode软件 在官网上下载最新的版本 Download Visual Studio Code - Mac, Linux, Windowshttps://code.visualstudio.com/download 二、安装minGW…

测试覆盖率 JVM 字节码测试运用 - 远程调试、测试覆盖、影子数据库

目录 前言&#xff1a; 简介 基础使用方式介绍 工具特性 前言&#xff1a; 在软件开发中&#xff0c;测试覆盖率是一个非常重要的指标&#xff0c;它表示代码中所有的测试用例是否都已经被覆盖到。JVM 字节码测试是一种比较新的测试方法&#xff0c;它可以对 JVM 字节码进…

nlp系列(6)文本实体识别(Bi-LSTM+CRF)pytorch

模型介绍 LSTM&#xff1a;长短期记忆网络&#xff08;Long-short-term-memory&#xff09;,能够记住长句子的前后信息&#xff0c;解决了RNN的问题&#xff08;时间间隔较大时&#xff0c;网络对前面的信息会遗忘&#xff0c;从而出现梯度消失问题&#xff0c;会形成长期依赖…

开源项目注意事项

fork项目后&#xff0c;记得另外开启一个分支然后在新分支上进行开发&#xff0c;push到仓库后从分支往原项目提交。 否则会出现Partially verified&#xff08;导致提交pr后auto-merge失败&#xff09; 注意git提交操作 https://blog.csdn.net/sonichenn/article/details/13…

flask中的werkzeug介绍

flask中的werkzeug Werkzeug是一个Python库&#xff0c;用于开发Web应用程序。它是一个WSGI&#xff08;Web Server Gateway Interface&#xff09;工具包&#xff0c;提供了一系列实用功能来帮助开发者处理HTTP请求、响应、URLs等等。Werkzeug的设计非常灵活&#xff0c;可以…

请问学JavaScript 前要学html 和css 吗?

前言 html和css可以理解为是一个网站的骨架和皮肤&#xff0c;这两部分做好后整个网站的外观展示的完成度基本就有了个90%左右&#xff0c;所以在学习js前是需要学习html和css 的&#xff0c;这两部分不用花特别多的时间&#xff08;虽然css如果想做一些非常炫酷的效果个人认为…