Go 源码之互斥锁 Mutex

文章目录

  • 一、总结
  • 二、源码
    • (一)Mutex
    • (二) Lock
    • (三)Unlock
  • 三、常见问题
          • 有劳各位看官 `点赞、关注➕收藏 `,你们的支持是我最大的动力!!!
          • 接下来会不断更新 `golang` 的一些`底层源码及个人开发经验`(个人见解)!!!
          • 同时也欢迎大家在评论区提问、分享您的经验和见解!!!

一、总结

  • 锁不可复制:拷贝互斥锁同时会拷贝锁的状态,容易造成死锁

  • 不是可重入锁,并且一个协程上锁,可以由另外一个协程解锁

  • mutex 锁结构

    • state:32位,锁状态,bitmap 设计,
      • 1 mutexLocked :低1位 锁定状态
      • 2 mutexWoken :低2位,从正常模式被唤醒
      • 3 mutexStarving 是低3位,进入饥饿模式
        1. mutexWaiterShift 剩下 29 位,当前互斥锁上等待者的数量
    • sema:协程等待信号量,用于控制goroutine的阻塞与唤醒
  • 上锁
    image.png

  • 解锁
    image.png

  • 锁的两种模式

  • 正常模式
    在正常模式下等待的 g 按照先进先出的方式获取锁
    新 g 会 自旋 ,并且和刚唤醒的 g 竞争锁,新 g 会优先获得锁,会导致刚被唤起的 g 一直获取不到锁,
    这种情况的出现会导致线程长时间被阻塞下去,所以Go语言在1.9中进行了优化,引入了 饥饿模式
  • 饥饿模式
    为了解决等待 goroutine 队列的长尾问题(饿死)
    当 g 超过 1ms 没有获取到锁,就会将当前互斥锁切换到饥饿模式
    等待的 g 按照先进先出的方式获取锁
    饥饿模式下,新进来的 G 不会参与抢锁也不会进入自旋状态,会直接进入等待队列的尾部。
    在这种情况下,这个被唤醒的 goroutine 会优先加入到等待队列的前面,防止饿死
    如果一个 goroutine 获得了互斥锁并且它在队列的末尾或者它等待的时间少于 1ms,那么当前的互斥锁就会切换回正常模式

二、源码

(一)Mutex

const (mutexLocked = 1 << iota 									// 1 mutex 锁定状态mutexWoken 													// 2 mutex 从正常模式被唤醒mutexStarving 												// 4 mutex进入饥饿状态mutexWaiterShift = iota 									// 3 当前互斥锁上等待者的数量
)type Mutex struct { 												// Mutex 不可被复制state int32 // 32位,锁状态,bitmap 设计,低三位表示锁的状态,剩下 29 位表当前互斥锁上等待者的数量sema  uint32 // 缓冲信号量,用来控制等待goroutine的阻塞休眠和唤醒,可以理解为一个队列
}

image.png

(二) Lock

  • 直接 CAS 进行原子操作上锁,成功则返回,失败则执行 lockSlow()
  • 上锁失败,执行 lockSlow(),内部持续 for 循环
    • 支持自旋(正常模式、cpu空闲、自旋次数<4),则进入自旋
    • 不支持自旋:两种模式
      • 正常模式:加入尾部队列,按照先进先出的方式加入队列等待获取锁
      • 饥饿模式:当goroutine超过1ms没有获取到锁,就会将当前互斥锁切换到饥饿模式,如果当前goroutine 存在队列中,则移动到队头,然后按照先进先出的方式获取锁,防止饿死

func (m *Mutex) Lock() {if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) { 	// 直接 CAS 修改锁的状态,将 state=0 改为 1 return}m.lockSlow()															// CAS 无法直接上锁,则执行慢路径
}
func (m *Mutex) lockSlow() {var waitStartTime int64 											// 用来计算waiter的等待时间starving := false 													// 是否是饥饿模式awoke := false 														// 是否唤醒iter := 0 															// 自旋次数old := m.state 														// 旧的锁状态for {// 支持自旋:锁不是饥饿模式 && cpu 支持继续自旋(<=4次)if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {// g不是唤醒状态 && // 没有其他正在唤醒的goroutine && // 等待队列中有正在等待的goroutine// && 尝试将当前锁的低2位的Woken状态位设置为1,表示已被唤醒, 这是为了通知在解锁Unlock()中不再唤醒其他waiterif !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {awoke = true                                     // 设置当前goroutine唤醒成功}runtime_doSpin()                                    // 进行自旋iter++                                              // 自旋次数++old = m.state                                       //更新锁状态continue}new := oldif old&mutexStarving == 0 { new |= mutexLocked                          // 非饥饿模式下进行加锁}if old&(mutexLocked|mutexStarving) != 0 {new += 1 << mutexWaiterShift                // 等待着数量+1}if starving && old&mutexLocked != 0 {new |= mutexStarving	                    // 加锁的情况下切换为饥饿模式}if awoke {                                     // goroutine 唤醒的时候进行重置标志if new&mutexWoken == 0 {throw("sync: inconsistent mutex state")}new &^= mutexWoken}if atomic.CompareAndSwapInt32(&m.state, old, new) {     //设置新的状态if old&(mutexLocked|mutexStarving) == 0 {break }queueLifo := waitStartTime != 0if waitStartTime == 0 {                       // 判断是不是第一次加入队列waitStartTime = runtime_nanotime()         // 如果之前就在队列里面等待了,加入到对头}        runtime_SemacquireMutex(&m.sema, queueLifo, 1) // 阻塞等待// 检查锁是否处于饥饿状态starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNsold = m.state// 如果锁处于饥饿状态,直接抢到锁if old&mutexStarving != 0 {if old&(mutexLocked|mutexWoken) != 0 || old>>mutexWaiterShift == 0 {throw("sync: inconsistent mutex state")}//设置标志,进行加锁并且waiter-1delta := int32(mutexLocked - 1<<mutexWaiterShift)//如果是最后一个的话清除饥饿标志if !starving || old>>mutexWaiterShift == 1 {//退出饥饿模式				delta -= mutexStarving}atomic.AddInt32(&m.state, delta)break}awoke = trueiter = 0} else {old = m.state}}
}

(三)Unlock

  • 直接 CAS 进行原子操作解锁,成功则返回,失败则执行 unlockSlow()
  • 解锁失败,执行 unlockSlow()
    • 正常模式
      • 如果当前队列中没有waiter,只有自己本身,直接解锁返回
      • 如果当前队列中有waiter,解锁后唤醒下个等待者 runtime_Semrelease(&m.sema, false, 1)
    • 饥饿模式
      • 饥饿模式直接将锁的控制权交给队列中队头等待的waiter
func (m *Mutex) Unlock() {new := atomic.AddInt32(&m.state, -mutexLocked)  // 直接 CAS 修改锁的状态 if new != 0 {// 不等于0说明解锁失败,m.unlockSlow(new)}
}
func (m *Mutex) unlockSlow(new int32) {//解锁一个未加锁的Mutex会报错if (new+mutexLocked)&mutexLocked == 0 {throw("sync: unlock of unlocked mutex")}if new&mutexStarving == 0 {old := newfor {// 正常模式下,没有waiter或者在处理事情的情况下直接返回if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {return}//如果有等待者,设置mutexWoken标志,waiter-1,更新statenew = (old - 1<<mutexWaiterShift) | mutexWokenif atomic.CompareAndSwapInt32(&m.state, old, new) {runtime_Semrelease(&m.sema, false, 1)return}old = m.state}} else {// 饥饿模式下会直接将mutex交给下一个等待的waiter,让出时间片,以便waiter执行runtime_Semrelease(&m.sema, true, 1)}
}

三、常见问题

1. sema 字段的含义作用
在正常模式下,一个goroutine先通过自旋方式获得锁,如果还不能获取锁,则通过信号量进行排队等

(所有等待者都会按照先入先出的顺序排队)但是当被唤醒后,第一个等待者并不会立即获得锁,而是需要和那些正在处于自旋阶段,尚未加入到队列中的routine竞争,如果抢不到锁的话,重新插入到队列的头部,而当这个goroutine加锁等待的时间超过了1ms之后,它会把mutex由正常模式切换到饥饿模式,这种模式下锁的所有权直接传递给头部的routine。后来者不会自旋,也不会尝试获取锁,直接加到队列尾部

2.什么是CAS,什么是原子操作
CAS(Compare and Swap)比较并交换,比较两个值,如果他们两者相等就把他们交换。这是一个由CPU硬件提供并实现的原子操作。
原子操作:操作系统提高的锁机制来保证操作的原子性和线程安全性。这种锁机制可以使执行原子操作的 CPU 独占内存总线或者缓存,并防止其他 CPU 对同一内存地址进行读写操作,从而避免了数据竞争的问题
具体来说,在执行原子操作时,CPU 会向内存总线或者缓存发送锁请求信号,然后等待锁授权。一旦锁授权成功,CPU 就可以将操作的结果写入内存,然后释放锁。其他 CPU 在锁被释放之前不能对同一内存地址进行读写操作,从而保证了操作的原子性和线程安全性。
需要注意的是,原子操作增加 CPU 的开销和内存带宽的消耗

3. 锁的正常模式和饥饿模式?
image.png

4.为什么锁不可复制
因为互斥锁没有绑定 gid,复制锁会复制锁的状态,容易出现死锁

5.什么情况下mutex会从饥饿模式变成正常模式呢?
如果当前 goroutine 等待锁的时间超过了 1ms,互斥锁就会切换到饥饿模式。
如果当前 goroutine 是互斥锁最后一个waiter,或者等待的时间小于 1ms,互斥锁切换回正常模式。

5. goroutine能进入自旋的条件

  • 当前互斥锁处于正常模式,不处于饥饿模式
  • 积累的自旋次数小于最大自旋次数(active_spin=4
  • cpu 核数大于 1
  • 有空闲的 P
  • 当前 goroutine 所挂载的 P 下,本地待运行队列为空
//go:linkname sync_runtime_canSpin sync.runtime_canSpin
func sync_runtime_canSpin(i int) bool {// active_spin = 4if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {return false}if p := getg().m.p.ptr(); !runqempty(p) {return false}return true
}
有劳各位看官 点赞、关注➕收藏 ,你们的支持是我最大的动力!!!
接下来会不断更新 golang 的一些底层源码及个人开发经验(个人见解)!!!
同时也欢迎大家在评论区提问、分享您的经验和见解!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/793093.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

中间件漏洞!!!

上次好像记得讲过了框架漏洞&#xff0c;&#xff08;weblogic不是&#xff09;那么&#xff0c;今天我们就来讲一些中间件的漏洞 1.Apache解析漏洞 众所周知&#xff0c;Apache是一个非常出名的中间件&#xff0c;本来呢&#xff0c;他是不存在漏洞的&#xff0c;但是如果用…

探索大数据时代下与云计算技术融合:实现企业级数据处理与分析的灵活性和效率性

引言&#xff1a; 关联阅读博客文章&#xff1a;深度剖析&#xff1a;计算机集群在大数据体系中的关键角色和技术要点 随着信息时代的到来&#xff0c;数据量的爆炸性增长已成为一种常态。企业、政府、科研机构等各个领域都面临着海量数据的收集、存储、处理和分析的挑战。在…

Flutter-发布插件到pub上传不上问题

问题1&#xff1a; 尝试指令&#xff1a; flutter packages pub publish --serverhttps://pub.dartlang.org问题2&#xff1a; 问题1解决后&#xff0c;进入验证身份&#xff0c;点击终端显示的链接&#xff0c;跳转到google验证&#xff0c;记得这里要科*学上网&#xff0c;点…

基于 Docker 的 python grpc quickstart

工作之后一直使用的 RPC 框架是 Apache 的 thrift&#xff0c;现在发现 grpc 更流行&#xff0c;所以也要学习一下&#xff0c;先来简单的跑一下 demo。在本地安装运行也很方便&#xff0c;不过因为有了 docker&#xff0c;所以在 docker 里面安装运行隔离性更好&#xff0c;顺…

Unity框架,ET框架8.1版本的打包流程记录

目录 打包代码前置1.必须要安装Visusal Studio 2022的组件&#xff0c;如下图&#xff0c;必须都要进行安装&#xff0c;不然会在代码重构的时候报错&#xff0c;丢失SDK。Rider的版本必须2023及以上 步骤一、使用Rider编辑器打开项目后进行重构项目步骤二、使用HybirdCLR生成A…

在ArcGIS Pro中优雅的制作荧光图

最近在网上看到了荧光图&#xff0c;觉得挺帅气&#xff0c;去网上查询了怎么制作荧光图&#xff0c;发现大部分都是QGIS的教程&#xff0c;作为ArcGIS的死忠用户&#xff0c;决定在ArcGIS Pro中实现&#xff0c;其实挺简单的。 1、软件&#xff1a;ArcGIS Pro3.0 2、点数据&a…

NOI - OpenJudge - 2.5基本算法之搜索 - 1490:A Knight‘s Journey - 超详解析(含AC代码)

点赞关注吧~ 1490:A Knights Journey 查看提交统计提问 总时间限制: 1000ms 内存限制: 65536kB 描述 Background The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey around the world. When…

前端三剑客 —— CSS (第五节)

目录 内容回顾&#xff1a; 特殊样式 特殊样式 CSS变量 常见函数 倒影效果 页面布局 Table 布局&#xff08;了解即可&#xff09; DIVCSS布局 弹性布局 1&#xff09;不使用弹性布局&#xff0c;而是使用DIVCSS 2&#xff09;使用弹性布局实现导航菜单 内容回顾…

echart 仪表盘实现指针的渐变色及添加图片

需求&#xff1a; 在仪表盘中设置指针为渐变色&#xff0c;并在仪表盘中间添加图片。 实现重点&#xff1a; 1、仪表盘指针渐变色的实现 渐变色通过设置pointer的itemStyle属性内的color实现&#xff0c;重点是echart版本&#xff0c;这个原本使用4.8.0的版本不起作用&#xff…

AD20全流程的使用笔记

目录 首先一个完整的AD工程文件需要我们自己建立的文件有这些&#xff1a; 新建工程&#xff1a; 从现有的工程文件中将元件添加到原理图库&#xff1a; 元件的摆放&#xff1a; 器件的复制及对齐&#xff1a; 导线、Netlabe、端口的添加&#xff1a; Value值的校对&…

SQL注入---盲注

文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 一.盲注概述 注是一种SQL注入攻击的形式&#xff0c;在这种攻击中&#xff0c;攻击者向目标应用程序发送恶意注入代码&#xff0c;然后通过观察应用程序的响应来推断出数据库中的信息。与常规的…

设计模式——抽象工厂模式02

如果是工厂模式是对同一类商品进行抽象然后生产。 那么抽象工厂模式是对工厂的抽象&#xff0c;每个工厂都能生产多种产品&#xff0c;不同工厂生产的商品性质相同&#xff0c;但外观&#xff0c;品牌会略有差异。 设计模式&#xff0c;一定要敲代码理解 商品抽象 public in…

每日五道java面试题之ZooKeeper篇(一)

目录&#xff1a; 第一题. ZooKeeper 是什么&#xff1f;第二题. Zookeeper 文件系统第三题. Zookeeper 怎么保证主从节点的状态同步&#xff1f;第四题. 四种类型的数据节点 Znode第五题 . Zookeeper Watcher 机制 – 数据变更通知 第一题. ZooKeeper 是什么&#xff1f; Zoo…

libusb Qt使用记录

1.libusb 下载 &#xff0c;选择编译好的二进制文件&#xff0c;libusb-1.0.26-binaries.7z libusb Activity 2. 解压 3. 在 Qt Widgets Application 或者 Qt Console Application 工程中导入库&#xff0c;Qt 使用的是 minggw 64编译器&#xff0c;所以选择libusb-MinGW-x64。…

基于STM32的电子钟与万年历设计

1、功能 硬件部分&#xff1a; (1). 采用 STM32F103ZET6作为主控芯片&#xff0c; 负责驱动其他外设模块 (2). 实时时钟采用 STM32 本身的 RTC (3). TFT(LCD)彩色显示屏 正点原子的3.5寸触摸屏&#xff08;NT3510&#xff09; (4). DS18B20 温度传感器 支持的功能&#xf…

C语言—用EasyX实现反弹球消砖块游戏

代码效果如下 #undef UNICODE #undef _UNICODE #include<graphics.h> #include<conio.h> #include<time.h> #include<stdio.h>#define width 640 #define high 480 #define brick_num 10int ball_x, ball_y; int ball_vx, ball_vy; int radius; int ba…

使用 Clickhouse 集成的表引擎同步数据方式详解

Clickhouse作为一个列式存储分析型数据库&#xff0c;提供了很多集成其他组件的表引擎数据同步方案。 官网介绍 一 Kafka 表引擎 使用Clickhouse集成的Kafka表引擎消费Kafka写入Clickhouse表中。 1.1 流程图 1.2 建表 根据上面的流程图需要建立三张表&#xff0c;分别Click…

Linux云计算之网络基础8——IPV6和常用网络服务

目录 一、IPV6基础 IPV6详解 IPv6数据报的基本首部 IPv6数据报的扩展首部 IPv6地址的表示方法 IPv6地址分类 网际控制报文协议ICMPv6 二、cisco基于IPV6的配置 cisco基于IPV6的配置步骤 模拟配置 三、HTML基础介绍 文档的结构 动手操作一下 四、常用网络服务介绍…

网络编程(TCP、UDP)

文章目录 一、概念1.1 什么是网络编程1.2 网络编程中的基本知识 二、Socket套接字2.1 概念及分类2.2 TCP VS UDP2.3 通信模型2.4 接口方法UDP数据报套接字编程TCP流套接字编程 三、代码示例3.1 注意点3.2 回显服务器基于UDP基于TCP 一、概念 首先介绍了什么是网络编程&#xff…

Emacs之实现复制当前已打开文件buffer(一百三十五)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…