【视觉SLAM入门】7.3.后端优化 基于KF/EKF和基于BA图优化的后端,推导及举例分析

"时间倾诉我的故事"

  • 1. 理论推导
  • 2. 主流解法
  • 3. 用EKF估计状态
    • 3.1. 基于EKF代表解法的感悟
  • 4. 用BA法估计状态
    • 4.1 构建最小二乘问题
    • 4.2 求解BA推导
    • 4.3 H的稀疏结构
    • 4.4 根据H稀疏性求解
    • 4.5 鲁棒核函数
    • 4.6 编程注意
  • 5.总结

引入:

  • 前端里程计能给出一个短时间内的轨迹和地图,时间长则不准确;
  • 为了得到长时间内最优轨迹和地图,构建一个规模更大的优化问题。在后端优化中,通常考虑更长时间内的状态估计问题。

1. 理论推导

还是摆出最经典的SLAM运动和观测方程
f ( x ) = { x k = f ( x k − 1 , u k ) + w k z k , j = h ( y j , x k ) + v k , j f(x)= \begin{cases} x_k = f(x_{k-1}, u_k) + w_k \\ z_{k,j} = h(y_j, x_k) + v_{k,j} \end{cases} f(x)={xk=f(xk1,uk)+wkzk,j=h(yj,xk)+vk,j
实际上要解决: 拥有某些运动数据 u u u 和观测数据 z z z 时,如何确定状态量 x x x y y y 的分布。

  • 解决如下:
    x k x_k xk k k k 时刻所有的未知量, x k ≜ { x k , y 1 , . . . , y m } x_k \triangleq \{x_k, y_1,...,y_m \} xk{xk,y1,...,ym}
    同时,令 k 时刻所有的观测值为 z k z_k zk
    代入上式,运动和观测方程以后如下:
    f ( x ) = { x k = f ( x k − 1 , u k ) + w k z k , j = h ( y j , x k ) + v k , j f(x)= \begin{cases} x_k = f(x_{k-1}, u_k) + w_k \\ z_{k,j} = h(y_j, x_k) + v_{k,j} \end{cases} f(x)={xk=f(xk1,uk)+wkzk,j=h(yj,xk)+vk,j

k k k 时刻,用 0 − k 0-k 0k 的数据估计现在的状态分布:

P ( x k ∣ x 0 , u 1 : k , z 1 : k ) ⇓ B a y e s 法则交换 z 和 x P ( z k ∣ x k ) P ( x k ∣ x 0 , u 1 : k , z 1 : k − 1 ) ⇓ 按 x k − 1 时刻为条件概率展开 ∫ P ( x k ∣ x k − 1 , x 0 , u 1 : k , z 1 : k − 1 ) P ( x k − 1 ∣ x 0 , u 1 : k , z 1 : k − 1 ) d x k − 1 P(x_k|x_0, u_{1:k}, z_{1:k}) \\\;\\\Downarrow Bayes法则交换z和x \\\;\\ P(z_k|x_k)P(x_k|x_0, u_{1:k},z_{1:k-1}) \\\;\\\Downarrow 按x_{k-1}时刻为条件概率展开 \\\;\\ \int P(x_k|x_{k-1}, x_0, u_{1:k}, z_{1:k-1})P(x_{k-1}|x_0, u_{1:k}, z_{1:k-1})\, \text d x_{k-1} P(xkx0,u1:k,z1:k)Bayes法则交换zxP(zkxk)P(xkx0,u1:k,z1:k1)xk1时刻为条件概率展开P(xkxk1,x0,u1:k,z1:k1)P(xk1x0,u1:k,z1:k1)dxk1

2. 主流解法

上式 ∫ P ( x k ∣ x k − 1 , x 0 , u 1 : k , z 1 : k − 1 ) P ( x k − 1 ∣ x 0 , u 1 : k , z 1 : k − 1 ) d x k − 1 \int P(x_k|x_{k-1}, x_0, u_{1:k}, z_{1:k-1})P(x_{k-1}|x_0, u_{1:k}, z_{1:k-1})\, \text d x_{k-1} P(xkxk1,x0,u1:k,z1:k1)P(xk1x0,u1:k,z1:k1)dxk1

主流的有两种做法:

    1. 假设马尔科夫性,当前状态仅和上个时态有关,用EKF等滤波器方法做状态估计;前两讲讲到过
    1. 当前状态和之前所有状态都有关系,基于BA用非线性优化等优化框架做。

3. 用EKF估计状态

马尔科夫性成立后,当前状态仅和上个时态有关,上边左右式可分别简化为(右式中, u k u_k uk k − 1 k-1 k1 时刻的状态无关,拿掉!):
左边: P ( x k ∣ x k − 1 , x 0 , u 1 : k , z 1 : k − 1 ) = P ( x k ∣ x k − 1 , u k ) 右边: P ( x k − 1 ∣ x 0 , u 1 : k , z 1 : k − 1 ) = P ( x k − 1 ∣ x 0 , u 1 : k , z 1 : k − 1 ) 左边:\qquad P(x_k|x_{k-1}, x_0, u_{1:k}, z_{1:k-1}) = P(x_k|x_{k-1}, u_k)\\\; \qquad右边:\qquad P(x_{k-1}|x_0, u_{1:k}, z_{1:k-1}) = P(x_{k-1}|x_0, u_{1:k}, z_{1:k-1}) 左边:P(xkxk1,x0,u1:k,z1:k1)=P(xkxk1,uk)右边:P(xk1x0,u1:k,z1:k1)=P(xk1x0,u1:k,z1:k1)

  • 由前边的两节知识,可知上式中我们只需维护一个状态量即可,不断迭代更新即可。假设它满足高斯分布,只需要考虑维护状态量的均值和协方差即可。
  • 另记: x ^ \hat x x^ 表示先验, x ˉ \bar x xˉ 表示后验

根据高斯分布性质可得EKF中的预测环节:
P ( x k ∣ x 0 , u 1 : k , z 1 : k − 1 ) = N ( A k x ˉ k − 1 + u k , A k P ^ k − 1 A k T + R ) = 记为 N ( x ˉ k , P ˉ k ) P(x_k|x_0,u_{1:k}, z_{1:k-1}) = N(A_k\bar x_{k-1}+u_k, \;\;\;A_k\hat P_{k-1}A_k^T+R) = 记为\quad N(\bar x_k, \bar P_k) P(xkx0,u1:k,z1:k1)=N(Akxˉk1+uk,AkP^k1AkT+R)=记为N(xˉk,Pˉk)

如此,就可以带入我们的EKF中进行使用。

3.1. 基于EKF代表解法的感悟

运算快,资源低;
局限:

    1. 马尔科夫性质—无法解决类似回环等当前状态与很久之前数据有关的问题
    1. x k x_k xk 在当前时刻的一次线性化,计算出后验概率,是假设该点的线性化在后验概率处还是有效的,实际上不然。只有小范围成立,在远处的地方并不能近似,这是EKF的 非线性误差
  • 2.1 而在非线性优化方法中,在每迭代一次,状态发生改变后就会做一阶或者二阶近似,重新做泰勒展开,适用范围更加广泛,状态变化大时候也适用。
    1. EKF SLAM不可适用于大场景,landmark多的时候,均值和方差是很大的。

4. 用BA法估计状态

BA(Bundle Adjustment):源于三维重建,在这里的意义是 通过不断调整相机的姿态和特征点的位置,使从每一个特征点反射出来的几束光线都收束到相机中心,类似求解只有观测方程的SLAM问题。

4.1 构建最小二乘问题

针对此问题,观测方程:

z = h ( ξ , p ) z = h(\xi, p) z=h(ξ,p)

ξ \xi ξ 是位姿(李代数表示) , p p p 是路标(特征点的位置), 观测误差如下:
e = z − h ( ξ , p ) e = z - h(\xi, p) e=zh(ξ,p)

代价函数(Cost Function)如下:

1 2 ∑ i = 1 m ∑ j = 1 n ∣ ∣ e i j ∣ ∣ 2 = 1 2 ∑ i = 1 m ∑ j = 1 n ∣ ∣ z i j − h ( ξ i , p j ) ∣ ∣ 2 \frac{1}{2}\sum_{i=1}^m\sum_{j=1}^n||e_{ij}||^2 = \frac{1}{2}\sum_{i=1}^m\sum_{j=1}^n||z_{ij}-h(\xi_{i},p_j)||^2 21i=1mj=1n∣∣eij2=21i=1mj=1n∣∣zijh(ξi,pj)2

  • 其中 z ( i , j ) z(i,j) z(i,j) 表示在位姿 ξ i \xi_i ξi 处观察路标 p j p_j pj 产生的数据。当该式最小时,我们的估计位姿 ξ i \xi_i ξi 和 路标 p j p_j pj 最接近真实值。

为了便于理解这里的 h h h ,举在相机中的例子:

  • 这里 h h h 表示将世界坐标下的点 p [ x , y , z ] p[x,y,z] p[x,y,z] 转到像素坐标(也就是程序可读图片的点位置的坐标)下的点 u , v u,v u,v :如下
    在这里插入图片描述

这就是一个观测方程 h h h 的一种具体参数化的过程。

4.2 求解BA推导

再看要求解的非线性最小二乘问题( h h h 非线性显然 ):

1 2 ∑ i = 1 m ∑ j = 1 n ∣ ∣ z i j − h ( ξ i , p j ) ∣ ∣ 2 \frac{1}{2}\sum_{i=1}^m\sum_{j=1}^n||z_{ij}-h(\xi_{i},p_j)||^2 21i=1mj=1n∣∣zijh(ξi,pj)2

首先定义要优化的变量:

x = [ ξ 1 , . . . , ξ m , p 1 , . . . , p n ] T x = [\xi_1, ..., \xi_m,p_1, ..., p_n]^T x=[ξ1,...,ξm,p1,...,pn]T

注意:虽然一个误差项针对的是单个位姿和路标点,但是在整体BA中,必须将优化变量定义为所有待优化的变量。


根据前文:求解非线性问题,要给一个小增量和增量方向,最终要求的也是这个 Δ x \Delta x Δx,这里给增量以后的代价函数为:

1 2 ∣ ∣ f ( x + Δ x ) ∣ ∣ 2 ≈ 1 2 ∑ i = 1 m ∑ j = 1 n ∣ ∣ e i j + F i j Δ ξ i + E i j Δ p j ∣ ∣ 2 \frac{1}{2}||f(x+\Delta x)||^2 \approx \frac{1}{2}\sum_{i=1}^m\sum_{j=1}^n||e_{ij}+F_{ij}\Delta \xi_i + E_{ij}\Delta p_j||^2 21∣∣f(x+Δx)221i=1mj=1n∣∣eij+FijΔξi+EijΔpj2

其中 F i j F_{ij} Fij 表示代价函数对相机姿态的偏导数, E i j E_{ij} Eij 表示对路标点位置的偏导数。

将相机位姿,和空间点变量分别放在一起:上式如下:

x c = [ ξ 1 , ξ 2 , . . . , ξ m ] T ∈ R 6 m , x p = [ p 1 , p 2 , . . . , p m ] T ∈ R 3 n ⇓ 1 2 ∣ ∣ f ( x + Δ x ) ∣ ∣ 2 = 1 2 ∣ ∣ e + F Δ x c + E Δ x p ∣ ∣ 2 x_c = [\xi_1, \xi_2, ..., \xi_m]^T \in \R^{6m}, \qquad x_p = [p_1, p_2, ..., p_m]^T \in \R^{3n} \\\;\Downarrow\\\;\\ \frac{1}{2}||f(x+\Delta x)||^2 = \frac{1}{2} ||e + F\Delta x_c + E \Delta x_p||^2 xc=[ξ1,ξ2,...,ξm]TR6mxp=[p1,p2,...,pm]TR3n21∣∣f(x+Δx)2=21∣∣e+FΔxc+EΔxp2

根据前边的非线性优化,最终我们要面临

H Δ x = g H \Delta x = g HΔx=g

而求解它要用的雅克比矩阵可以根据位姿和路标分别定义为:

J = [ F E ] J = [F \quad E] J=[FE]

则:
H = J T J = [ F T F F T E E T F E T E ] H = J^TJ= \begin{bmatrix} F^TF & F^TE \\ E^TF & E^TE \end{bmatrix} H=JTJ=[FTFETFFTEETE]

点越多,就代表这个H的维度越大,计算复杂,资源占得多,接下来分析如何观察这个 H H H 的特点。

4.3 H的稀疏结构

根据前边,我们知道 H = J T J H = J^TJ H=JTJ, H H H的研究放在 J J J 上,对于J,考虑一个 e i j e_{ij} eij 它的表述如下:

在这里插入图片描述
几何意义就是:它只涉及第 i 个矩阵和第 j 个路标,其余都为0,描述的是 ξ i \xi_i ξi看到 p j p_j pj 这件事,且前边的是位姿导数(6维),后边的是路标(三维)。

  • 举例说明

假设有2个相机,6个路标。可视化它们的关系如下(可以观测到,则底下用实线连接):

在这里插入图片描述根据上边,把 C 1 C_1 C1 观察到 P 1 P_1 P1 的雅克比直观出来,则如下,因为 C 1 C_1 C1 六维:

在这里插入图片描述
这个时候,将所有 J i j J_{ij} Jij 和 它们相乘之后的 H H H 同样直观展示:

在这里插入图片描述
我们发现:H对应邻接矩阵,可以知道 假如 C i C_i Ci 可以观察到 P j P_j Pj ,那么 H i j H_{ij} Hij 则是有值的,否则是为0.如下:

在这里插入图片描述

4.4 根据H稀疏性求解

根据以上H性质,可以将H分块为:其中 B B B 纯位姿, C C C对角线纯路标,B非对角非零表示共视关系:
H = [ B E E T C ] H = \begin{bmatrix} B & E \\ E^T & C \end{bmatrix} H=[BETEC]

这个时候就可以求解 H Δ x = g H \Delta x = g HΔx=g 这个方程:

[ B E E T C ] [ Δ x c Δ x p ] = [ v w ] \begin{bmatrix} B & E \\ E^T & C \end{bmatrix} \begin{bmatrix}\Delta x_c \\ \Delta x_p\end{bmatrix} = \begin{bmatrix} v \\w \end{bmatrix} [BETEC][ΔxcΔxp]=[vw]

此时通过Schur消元(也叫边缘化)—就是先求一个比如 Δ x c \Delta x_c Δxc 然后再反代回去求 Δ x p \Delta x_p Δxp 的方法去求解。

4.5 鲁棒核函数

  • 说明问题:我们采用的是误差项的二范数平方和,如果出现误匹配,单个项的误差就很大,此时优化算法会均摊误差去调整其他正确的数据。
  • 问题原因:误差很大时,二范数增长过快(平方嘛)
  • 解决:鲁棒核函数–把二范数度量换成增长较低,同时保证光滑(求导要求)的表述,因为它使得整个优化结果更为鲁棒,所以又叫它鲁棒核函数(Robust Kernel)。

列举一个常见的鲁棒核函数,Huber核:

f ( x ) = { 1 2 e 2 i f ∣ e ∣ ≤ δ , δ ( ∣ e ∣ − 1 2 δ ) o t h e r w i s e . f(x)= \begin{cases} \frac{1}{2}e^2 \qquad\qquad\qquad if|e| \le \delta, \\ \delta(|e| - \frac{1}{2} \delta)\qquad\quad otherwise . \end{cases} f(x)={21e2ifeδ,δ(e21δ)otherwise.
它的图像如下:

在这里插入图片描述
此外还有Cauchy核,Tukey核等。

4.6 编程注意

在使用G2O求解时,所有点云都要进行Schur,因为定义的Matrix维度仅仅是相机姿态参数的维度,要确保它不包含其他路标维度,不然报错。

5.总结

  • 假设马尔科夫,EKF代表的滤波器模型
  • 考虑所有状态,构成最小二乘问题,只有观测时又称BA。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/79261.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

markdown学习笔记

markdown学习笔记 1.文字&#xff08;依靠HTML&#xff09; 1.1文字缩进-空格转义符 单字符空&#xff1a;&emsp; 半字符空&#xff1a;&ensp;1.2文字对齐 「居中&#xff1a;」<center> 居中 </center> or <p align"center"> 居中 …

吃瓜教程第一二章学习记录

当大多数人听到 "机器学习 "时&#xff0c;他们会联想到机器人&#xff1a;一个可靠的管家或一个致命的终结者&#xff0c;这取决于你问谁。但是&#xff0c;机器学习并不只是未来主义的幻想&#xff0c;它已经存在了。事实上&#xff0c;在一些特殊的应用中&#xf…

upload-labs文件上传漏洞通关

一、环境搭建 upload-labs是一个使用php语言编写的&#xff0c;专门收集渗透测试和CTF中遇到的各种上传漏洞的靶场。 下载地址&#xff1a;https://github.com/c0ny1/upload-labs/releases 在 win 环境下 直接解压到phpstudy下即可 二、通关 &#xff08;一&#xff09;16关…

使用凌鲨进行聚合搜索

作为研发人员&#xff0c;我们经常需要在多个来源之间查找信息&#xff0c;以便进行研发工作。除了常用的搜索引擎如百度和必应之外&#xff0c;我们还需要查阅各种代码文档和依赖包等资源。这些资源通常分散在各个网站和文档库中&#xff0c;需要花费一定的时间和精力才能找到…

Redis缓存更新策略、详解并发条件下数据库与缓存的一致性问题以及消息队列解决方案

0、前言 我们知道&#xff0c;缓存由于在内存中&#xff0c;数据处理速度比直接操作数据库要快很多&#xff0c;因此常常将数据先读到缓存中&#xff0c;再进行查询、更新等操作。 但与之而来的问题就是&#xff0c;内存中的数据不仅没有持久化&#xff0c;而且需要保证…

如何在微软Edge浏览器上一键观看高清视频?

编者按&#xff1a;视频是当下最流行的媒体形式之一。但由于视频压缩、网络不稳定等原因&#xff0c;我们常常可以看到互联网上的很多视频其画面质量并不理想&#xff0c;尤其是在浏览器端&#xff0c;这极大地影响了观看体验。不过&#xff0c;近期微软 Edge 浏览器推出了一项…

linux命令查看谁在使用服务器的GPU

命令&#xff1a;查看GPU使用情况 nvidia-smi 可以知悉GPU占用情况和主要使用GPU的进程&#xff0c;如下图所示&#xff1a; 实时查看gpu使用&#xff1a; nvidia-smi -l 1 表示每隔1s刷新一下&#xff0c;数字可更改。 查看进程的归属者 方法一&#xff1a;ps -f -p pid…

发布文章到wordpress

给朋友新建的wp网站,没有内容怎么办,总不能一篇篇的挨个写入吧。用wp提供的录入模块就可以了 参考 wp说明文档 获取docx内容保存到wp 资料有个docx文件,但文件格式混乱,好在有目录,可以基于目录,对文章分割,用正则拆分存入wp 首先用pandoc把docx转为md文件,速度较慢,…

——二叉树

二叉树种类 二叉树有两种主要的形式&#xff1a;满二叉树和完全二叉树。 满二叉树 如果一棵二叉树只有度为0的结点和度为2的结点&#xff0c;并且度为0的结点在同一层上&#xff0c;则这棵二叉树为满二叉树。 完全二叉树 在完全二叉树中&#xff0c;除了最底层节点可能没…

开发者必看!NetMarvel 五大能力驱动【变现收益】增长飞轮

更多流量带来更多预算&#xff0c;再由更多预算驱动增长。这不仅是出海App增长变现的底层逻辑&#xff0c;也是程序化广告平台的运行法则。App出海之路走到今天&#xff0c;开发者已经意识到&#xff1a;应用内购是实现正向现金流的必要手段&#xff0c;接入广告平台获取广告收…

Spark on YARN 部署搭建详细图文教程

目录 一、引言 二、SparkOnYarn 本质 2.1 Spark On Yarn 的本质? 2.2 Spark On Yarn 需要啥? 三、配置 spark on yarn 环境 3.1 spark-env.sh 3.2 连接到 YARN 中 3.2.1 bin/pyspark 3.2.2 bin/spark-shell 3.2.3 bin/spark-submit (PI) 四、部署模式 DeployMod…

阿维塔30亿元融资背后:价格战再席卷,如何守住品牌底线?

造车新势力阿维塔近期消息不断。 8月31日&#xff0c;阿维塔宣布完成B轮融资&#xff0c;规模达到30亿元&#xff0c;投后估值近200亿元。随后的9月2日&#xff0c;阿维塔科技宣布8月共交付新车1975辆&#xff0c;略高于上月的1786辆&#xff0c;稳居30万以上纯电SUV头部阵营。…

从官方文档看Redis

一.核心能力 Redis 1.In-memory data structures 内存数据结构 Redis以"键值对" 的方式来存储数据, 是一种"非关系型数据库" ps: MySQL以"表"的方式来存储数据, 是一种"关系型数据库" 2.Programmability 可编程性 Redis可以用脚本…

遥感数据与作物模型同化应用:PROSAIL模型、DSSAT模型、参数敏感性分析、数据同化算法、模型耦合、精度验证等主要环节

查看原文>>>遥感数据与作物模型同化实践技术应用 基于过程的作物生长模拟模型DSSAT是现代农业系统研究的有力工具&#xff0c;可以定量描述作物生长发育和产量形成过程及其与气候因子、土壤环境、品种类型和技术措施之间的关系&#xff0c;为不同条件下作物生长发育及…

【UE 材质】力场护盾和冲击波效果

目录 效果 步骤 一、制作力场护盾材质 二、制作冲击波材质效果 三、制作冲击波粒子效果 四、制作震动效果 效果 步骤 一、制作力场护盾材质 1. 首先新建一个第一人称角色游戏模板 2. 新建一个材质&#xff0c;用于作为力场护盾的材质&#xff0c;这里命名为“Mat_for…

cms之wordpress主题安装

WordPress主题安装教程的方法有两种&#xff0c;分为在线安装和上传安装&#xff0c;下面是主题详细安装方法的步骤。 后台在线安装主题 从后台的主题界面在线安装主题是最方便的WordPress主题安装方式。方法如下&#xff1a; 1 在WordPress后台&#xff0c;转到外观→主题 …

本地部署CodeLlama +GTX1080显卡 对接open-interpreter对接wxbot(一)

1.效果展示 开源项目GitHub - oobabooga/text-generation-webui: A Gradio web UI for Large Language Models. Supports transformers, GPTQ, llama.cpp (GGUF), Llama models. "Code Llama" 是一个大型代码语言模型的系列,基于 "Llama 2" 构建,为编程…

进程属性/进程状态

task_struct-PCB的一种 在Linux中描述进程的结构体叫做task_struct。进程也叫任务 task_struct是Linux内核的一种数据结构&#xff0c;它会被装载到RAM(内存)里并且包含着进程的信息。 task_ struct内容分类 标示符: 描述本进程的唯一标示符&#xff0c;用来区别其他进程。 …

Mysql高级——索引创建和使用

索引的创建 1. 索引的声明与使用 1.1 索引的分类 MySQL的索引包括普通索引、唯一性索引、全文索引、单列索引、多列索引和空间索引等。 从功能逻辑上说&#xff0c;索引主要有 4 种&#xff0c;分别是普通索引、唯一索引、主键索引、全文索引。 按照物理实现方式&#xff…

一文带你走进软件测试的大门

目录 前言 需求 用户需求 软件需求 从测试人员的角度看需求 测试用例 测试环境 测试数据 预期结果 操作步骤 为什么要有测试用例 Bug的概念 世界上的第一个bug bug的定义 开发模型和测试模型 软件的生命周期 开发模型 瀑布模型 螺旋模型 增量、迭代 敏捷 …