redis 集群 (主从复制 哨兵模式 cluster)

目录

一     主从复制

(一)相关理论

1,主从复制定义

2,主从复制的作用

3,主从复制架构图

4   sync 同步过程

5,主从复制流程

(二) 实验模拟

1, 实验环境

2, 修改主 服务器77的配置文件

3,  修改从服务器88,99的配置文件

4,   查看主从是否配置成功

5,  检测主从 复制效果

二    哨兵模式

(一)哨兵模式 相关理论

1,哨兵模式出现背景

2,哨兵的核心功能

3,哨兵模式原理

4,哨兵模式的作用

5,哨兵结构

6,哨兵架构图

7,哨兵监控方式

7.1哨兵对主从复制集群进行监控

7.2 哨兵与哨兵之间进行相互监控

8,哨兵监控目的

8.1 哨兵与哨兵之间的监控目的

8.2 哨兵监控所有的redis数据库的目的

9  故障切换原理

10 故障转移机制

11,主节点选举

(二)   实验模拟

1, 实验环境

2, 修改Redis 哨兵模式的配置文件(所有节点)

3, 启动哨兵模式

4, 查看 哨兵状态

(三) 哨兵模式 故障模拟

1, 查看redis-server进程号

2,杀死 Master 节点上redis-server的进程号

3, 查看结果

4, 验证结果

三     总结


redis群集有三种模式,分别是主从同步/复制、哨兵模式、Cluster,本文会讲解一下三种模式的工作方式,以及如何搭建cluster群集

●主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。
缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。

●哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。
缺陷:写操作无法负载均衡;存储能力受到单机的限制;哨兵无法对从节点进行自动故障转移,在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。

●集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。
 

一     主从复制

(一)相关理论

1,主从复制定义

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点

默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。
 

2,主从复制的作用

●数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
●故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
●负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
●高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。
 

3,主从复制架构图

4   sync 同步过程

rdb (完全备份的文件) 给从服务器

aof (增备) 给从服务器

5,主从复制流程

(1)若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。
(2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。
(3)后台进程完成缓存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。
(4)Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Mater同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。
 

(二) 实验模拟

1, 实验环境

88 ,99 机器为 redis 从服务器     77 为redis 主服务器

均安装redis

2, 修改主 服务器77的配置文件

vim /etc/redis/6379.conf

代码如下:

bind 0.0.0.0						#70行,修改监听地址为0.0.0.0
daemonize yes						#137行,开启守护进程
logfile /var/log/redis_6379.log		#172行,指定日志文件目录
dir /var/lib/redis/6379				#264行,指定工作目录
appendonly yes						#700行,开启AOF持久化功能

再重启redis  /etc/init.d/redis_6379 restart

3,  修改从服务器88,99的配置文件

vim /etc/redis/6379.conf

代码如下:

bind 0.0.0.0						#70行,修改监听地址为0.0.0.0
daemonize yes						#137行,开启守护进程
logfile /var/log/redis_6379.log		#172行,指定日志文件目录
dir /var/lib/redis/6379				#264行,指定工作目录		
replicaof 192.168.10.23 6379        #288行,指定要同步的Master节点IP和端口
appendonly yes						#700行,开启AOF持久化功能

再重启redis  /etc/init.d/redis_6379 restart

4,   查看主从是否配置成功

方法1 查看主服务器的日志

tailf /var/log/redis_6379.log 

方法2  也可以这么看  redis-cli info replication

可以看到两个从

5,  检测主从 复制效果

主  服务器设置新键

从服务器也能看的到

二    哨兵模式

(一)哨兵模式 相关理论

1,哨兵模式出现背景

主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。
 

2,哨兵的核心功能

在主从复制的基础上,哨兵引入了主节点的自动故障转移。

3,哨兵模式原理

哨兵(sentinel):是一个分布式系统,用于对主从结构中的每台服务器进行监控,当出现故障时通过投票机制选择新的 Master并将所有slave连接到新的 Master。所以整个运行哨兵的集群的数量不得少于3个节点。
 

4,哨兵模式的作用

●监控:哨兵会不断地检查主节点和从节点是否运作正常。

●自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。

●通知(提醒):哨兵可以将故障转移的结果发送给客户端。

5,哨兵结构

哨兵结构由两部分组成,哨兵节点和数据节点:

●哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
●数据节点:主节点和从节点都是数据节点。
 

6,哨兵架构图

7,哨兵监控方式

7.1哨兵对主从复制集群进行监控

监控对象 :     所有redis 数据节点

7.2 哨兵与哨兵之间进行相互监控

监控的对象:  哨兵彼此

8,哨兵监控目的

8.1 哨兵与哨兵之间的监控目的

检测彼此的存活状态

8.2 哨兵监控所有的redis数据库的目的

为了实现故障自动故障切换

9  故障切换原理

①当master 挂掉,哨兵会及时发现,发现之后 进行投票机制,选举出一个新的master服务器 (一定是基数)

② 完成salve---》master的从向主进行切换

③ 完成其他的从服务器对新的master配置

10 故障转移机制

① 由哨兵节点定期监控发现主节点是否出现了故障
每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

② 当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

③ 由leader哨兵节点执行故障转移,过程如下:
●将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
●若原主节点恢复也变成从节点,并指向新的主节点;
●通知客户端主节点已经更换。
 

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。

11,主节点选举

①过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
②选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
③选择复制偏移量最大,也就是复制最完整的从节点。
 

(二)   实验模拟

1, 实验环境

88 ,99 机器为 redis 从服务器     77 为redis 主服务器

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式
 

2, 修改Redis 哨兵模式的配置文件(所有节点)

配置文件在这

vim /opt/redis-5.0.7/sentinel.conf

代码如下:

protected-mode no								#17行,关闭保护模式(取消注释)port 26379										#21行,Redis哨兵默认的监听端口daemonize yes									#26行,指定sentinel为后台启动logfile "/var/log/sentinel.log"					#36行,指定日志存放路径dir "/var/lib/redis/6379"						#65行,指定数据库存放路径sentinel monitor mymaster 192.168.10.23 6379 2	#84行,修改 指定该哨兵节点监控192.168.10.23:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移sentinel down-after-milliseconds mymaster 30000	#113行,判定服务器down掉的时间周期,默认30000毫秒(30秒)sentinel failover-timeout mymaster 180000		#146行,故障节点的最大超时时间为180000(180秒)

小技巧 修改完主服务器的配置文件后,可以scp 传给两个从服务器直接问覆盖

3, 启动哨兵模式

先启master,再启slave
 

cd /opt/redis-5.0.7/                      
#先去到sentinel.conf 所在目录redis-sentinel sentinel.conf &
#redis-sentinel  是开启的命令    sentinel.conf是哨兵的配置文件  &是后台运行

4, 查看 哨兵状态

方法1 查看master 的哨兵日志  tailf /var/log/sentinel.log

方法2  redis-cli -p 26379 info sentinel

(三) 哨兵模式 故障模拟

1, 查看redis-server进程号

ps -ef | grep redis

2,杀死 Master 节点上redis-server的进程号

kill -9 2011

3, 查看结果

tailf /var/log/sentinel.log
查看主服务器上   哨兵的日志

4, 验证结果

此时88 服务器变为主     77(原本的主)救活了 会变成从   99仍然是从

先救活77 服务器:

88 服务器新增键:

77 服务器:

99 服务器:

 

三     总结

redis主从复制 是为了数据冗余和读写分离

在这两种模式中,有两种角色主节点(master)和从节点(slave),主节点负责处理写的操作,并将数据更改复制到一个或多个从节点。
这样我们的主节点负载减轻,从节点可以提供数据读取服务,实现读写分离,如果主节点停止服务,从节点之一可以立即接管主节点的角色,再继续提供服务


具体流程如下:
1、从节点启动成功连接主节点后,发送一个sync命令

2、主节点接受到sync的命令后开始在后台保存快照,同时,它也开始记录接收到rsnc后所有执行写的命令,快照完成后会将这个快照文件发送给从节点。

3、从节点收到快照文件之后开始载入,并持续接受主节点发送过来的新的写命令执行

总的来说 通过主从复制,redis 能够实现数据的备份(master 产生的数据能slave备份),负责均衡(读操作可以分摊到slave上去)和高可用(master宕机后,可以由slave进行故障切换)


redis  哨兵机制
哨兵是一个高可用的行解决方案 官方认可 默认模式

1、监控:redis 哨兵 会持续监控master和slave实例是否正常运行

2、通知:如某个redis实例有问题,哨兵可以通过API向管理员或者其他应用发信通知

3、自动故障转移:如果master节点不工作,哨兵会开始故障转移的过程,选择一个slave节点晋升为新的master,其他剩余slave的节点会被重新配置为信的master节点的slave

4、配置提供服务:客户端可以使用哨兵来查询被认证的master节点该master节点的目录所有的slave节点


redis 哨兵是一个用于管理多个reids服务的系统,它提供监控、通知、自动故障转移、配置提供服务的功能,以实现redis高可用性


redis cluster 集群

redis cluster 是一个分布式数据库解决方案,提供一组redis服务之间的网络接口

主要有几个功能:
1、数据分片:redis cluster 实现了就爱那个数据自动分片,每个节点都会保存一份数据

2、故障转移:若个某个节点发生故障,cluster会自动将其上的分片迁移个其他节点

3、高性能:由于数据分片和网络,redis cluster提供高性能的数据操作

4、高可能:如果单个节点挂掉了,那么redis cluster 内部会自动进行故障恢复


redis 集群 是一个提供高性能、高可用、数据分片、故障转移特性的分布式数据解决方案


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/790906.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

手机如何访问vue项目localhost

手机访问vue项目本地localhost: 打开终端,运行ipconfig(对于Windows)或ifconfig(对于Mac/Linux)来查看计算机的IP地址。找到类似IPv4 Address的条目,这是计算机的本地IP地址。 在终端中&#x…

机械制造学习笔记

一、切削加工、切削运动的基本概念及刀具切削过程 切削加工: 定义:切削加工是利用切削刀具对工件进行切削,以去除多余材料并得到所需形状和尺寸的加工方法之一。应用:广泛应用于金属加工、木材加工、塑料加工等领域,是…

axios请求封装,适用于RN,React,Vue,Uniapp(相对于前面几个新增个自定义header头)

axios.js import axios from axios; const instace axios.create({baseURL: https://internal.takehr.cn, //接口地址timeout: 5000, //超时时间 });//配置请求拦截器,在请求之前的数据处理,比如在请求头添加token,所有的请求都会经过拦截器 instace.interceptors.request.us…

IDEA连接SqlServer数据库

目录 下载jar包 下载sqljdbc_12.6压缩包 解压 导入IDEA 新建文件夹 复制粘贴进JDBC文件夹并设为library 编写类及方法 代码 下载jar包 以sqljdbc_12.6为例 下载sqljdbc_12.6压缩包 最新地址:sqljdbc 官方最新地址 解压 解压即用 导入IDEA 新建文件夹 复制…

JS实现双向数据绑定的三种方式

1、第一种是通过Proxy数据代理来达到双向绑定的,这是Vue3更新的双向绑定方式。 <!DOCTYPE html> <html lang="en"> <head><meta charset="UTF-8"><title>Proxy双向绑定</title> <<

(delphi11最新学习资料) Object Pascal 学习笔记---第8章第5节(抽象方法)

8.5 抽象方法与类&#xff1a; ​ 在创建类的层次结构时&#xff0c;有时很难确定哪个是基类&#xff0c;因为基类可能并不代表实际的实体&#xff0c;而只是用来保存某些共享行为。例如&#xff0c;猫或狗类的动物基类。这种不需要创建任何对象的类通常被称为抽象类&#xff…

C++的并发世界(六)——互斥解决数据共享冲突

0.数据共享的问题 在多个线程中共享数据时。需要注意线程安全问题。如果多个线程同时访问同一个变量。并且其中至少有一个线程对该变量进行了写操作。那么就会出现数据竞争问题。数据竞争可能会导致程序崩溃,产生来定义的结果,或者得到错误的热果。为了避免数据竞争问题。需要…

docker部署nacos,单例模式(standalone),使用mysql数据库

文章目录 前言安装创建文件夹"假装"安装一下nacos拷贝文件夹删除“假装”安装的nacos容器生成nacos所需的mysql表获取mysql-schema.sql文件创建一个mysql的schema 重新生成新的nacos容器 制作docker-compose.yaml文件查看网站 前言 此处有本人写得简易版本安装&…

【开发、测试】接口规范与测试

接口测试基础 url 是互联网标准资源地址&#xff0c;称为统一资源定位符 组成&#xff1a;协议&#xff0c;服务器地址&#xff0c;端口号 HTTP协议 HTTP&#xff1a;超文本传输协议&#xff0c;基于请求与响应的应用层协议 作用&#xff1a;规定了客户端和服务器之间的信…

可视化大屏的应用(18):网络安全和信息安全领域

可视化大屏在物联网领域具有以下价值&#xff1a; 实时监控和可视化&#xff1a; 可视化大屏可以将物联网设备和传感器的数据以图表、图形和动画等形式实时展示&#xff0c;帮助用户直观地了解物联网系统的运行状态和数据趋势。通过可视化大屏&#xff0c;用户可以快速发现异…

海外版 双语言爆点游戏 双语音指挥游戏 去中心化投注游戏 双声道音效游戏 附带安装教程

海外版双语言爆点游戏/纯vue源码版/去中心化投注游戏 系统为纯VUE源码&#xff0c;附带安装教程 前端只有一个爆点游戏能玩&#xff0c;去中心化无后台 源码下载&#xff1a;https://download.csdn.net/download/m0_66047725/88991298 更多资源下载&#xff1a;关注我。

为 AI 而生的编程语言「GitHub 热点速览」

Mojo 是一种面向 AI 开发者的新型编程语言。它致力于将 Python 的简洁语法和 C 语言的高性能相结合&#xff0c;以填补研究和生产应用之间的差距。Mojo 自去年 5 月发布后&#xff0c;终于又有动作了。最近&#xff0c;Mojo 的标准库核心模块已在 GitHub 上开源&#xff0c;采用…

使用 XCTest 进行 iOS UI 自动化测试

使用 XCTest 进行 iOS UI 自动化测试是一种有效的方法&#xff0c;可以帮助你验证应用界面的行为和功能。以下是使用 XCTest 进行 iOS UI 自动化测试的基本步骤&#xff1a; 设置项目: 确保你的 Xcode 项目已经包含了 XCTest 测试目标。在测试目标中创建一个新的测试类&#xf…

防火墙状态检测和会话机制

FW对TCP&#xff0c;UDP和ICMP协议的报文创建会话

laravel如何通过DB获取一条数据并转成数组

在 Laravel 中&#xff0c;你可以使用原生数据库查询构建器&#xff08;DB facade&#xff09;来获取一条数据&#xff0c;并将其转换为数组。这可以通过在查询链的末尾调用 first() 方法后&#xff0c;使用 toArray() 方法来实现。first() 方法会返回一个 StdClass 对象&#…

hadoop:案例:将顾客在京东、淘宝、多点三家平台的消费金额汇总,然后先按京东消费额排序,再按淘宝消费额排序

一、原始消费数据buy.txt zhangsan 5676 2765 887 lisi 6754 3234 1232 wangwu 3214 6654 388 lisi 1123 4534 2121 zhangsan 982 3421 5566 zhangsan 1219 36 45二、实现思路&#xff1a;先通过一个MapReduce将顾客的消费金额进行汇总&#xff0c;再通过一个MapReduce来根据金…

医疗器械网络安全 | 美国FDA审批程序和欧盟合格评定程序的区别

要进入美国与欧洲市场&#xff0c;均需要通过评定程序审批。 两者的审批流程核心区别在于&#xff1a;所有在美国上市流通的医疗器械产品必须经过FDA的审核认证&#xff0c;才能投放市场。而欧盟市场&#xff0c;医疗器械制造商只需要自证设备合规性&#xff0c;并有指定机构干…

红黑树:自平衡二叉搜索树的原理与实践

红黑树&#xff1a;自平衡二叉搜索树的原理与实践 1.红黑树的性质2. 红黑树的插入和删除3. 伪代码示例4. C代码示例5. 结论 红黑树是一种自平衡的二叉搜索树&#xff0c;它在计算机科学中广泛应用于数据的组织和存储。通过维护特定的平衡条件&#xff0c;红黑树确保了基本动态集…

glm2大语言模型服务环境搭建

一、模型介绍 ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本&#xff0c;在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上&#xff0c;ChatGLM2-6B 引入了如下新特性&#xff1a; 更强大的性能&#xff1a;基于 ChatGLM 初代模型的开发经验&…

代码随想录Day43

Day 43 动态规划 part05&#xff08;01背包问题part02&#xff09; 今日任务 最后一块石头的重量 II 目标和 474.一和零 代码实现 最后一块石头的重量 II public int lastStoneWeightII(int[] stones) {int sum Arrays.stream(stones).sum();//表示大小为i的背包中最多能装…