MapReduce [OSDI‘04] 论文阅读笔记

原论文:MapReduce: Simplified Data Processing on Large Clusters (OSDI’04)

1. Map and Reduce

  • Map:处理键值对,生成一组中间键值对
  • Reduce:合并与同一中间键相关的所有中间值
  • process overview:分割输入数据,组织程序在一组机器上的执行,处理机器故障,以及管理所需的机器间的通信

2. Introduction

  • 如何并行化计算、分发数据和处理故障等问题,使得原本简单的计算被大量复杂的代码所掩盖,无法处理这些问题。
  • 通过设计MapReduce,我们可以清晰表达我们试图执行的简单计算,同时隐藏关于并行化、容错、数据分布、负载均衡的相关细节。
  • 主要贡献:提供一个可以自动进行分布式并行化大规模计算的接口,及其实现。

3. Programming Model

  • MapReduce执行的计算以一组键值对作为输入,然后产生另一组键值对作为输出。执行的计算由两个函数完成:Map函数和Reduce函数,均由用户来编写实现。
  • Map:应用在每个键值对上,产生一组中间键值对作为输出,然后MapReduce库会汇总关联于同一中间键I的中间值并将它们传送给Reduce函数。
  • Reduce:接受由Map函数传递过来的中间键I及其相应的一组中间值作为输入,然后合并这些中间值得到一个更小的值的集合作为输出。
  • 类型
    • 在这里插入图片描述
    • 对于Map,输入的键值对和输出的键值对来自不同的值域,而对于Reduce则相同。
  • 例子
    • 在这里插入图片描述
    • 给定大量的文档,计算出文档中每个word出现的次数。Map函数会输出每个单词以及相关的出现次数,Reduce函数会将某个单词的所有计数相加并输出。

4. Implementation

4.1 Execution Overview

在这里插入图片描述

  • MapReduce的执行流程:
    • 将输入文件分割成若干个大小为16到64MB的pieces,然后在集群的机器中启动多个副本程序(fork);
    • 在启动的程序中,由一个master和多个workers;假设计算过程总共包含M个Map任务和R个Reduce任务,master会将所有这些任务分配给workers,一个worker会被分配到一个Map任务或一个Reduce任务;(assign map/reduce)
    • 被分配Map任务的worker首先读取相应split的内容,从输入数据中解析出所有的键值对,为每个键值对调用Map函数,由Map函数产生的中间键值对会被缓冲在内存中;(read)
    • 缓冲在内存中的中间键值对会被阶段性地写到本地磁盘中,同时根据partition函数被分为R个部分,然后worker会将这些中间结果的位置信息报告给master;(local write)
    • 当一个负责Reduce任务的worker接收到master传递过来的中间结果的位置信息后,通过远程调用从Map workers的本地磁盘中读取中间结果;当worker完成读取所有中间结果时,将数据以中间键排序使得对应相同键的值能够连续分布;(如果中间结果数据量太大,可能需要进行外部排序)(read remote)
    • Reduce worker遍历所有已排序的中间键值对,然后对于每个中间键,将该键及其相应的值作为参数调用用户定义的Reduce函数,Reduce 函数的输出会被放入到对应的 Reduce Partition 输出文件;(write)
    • 当所有的Map任务和Reduce任务都已经完成后,master会唤醒用户程序,MapReduce调用结束并返回到用户代码中。
4.2 Master Data Structures
  • 对于每个Map任务和Reduce任务,存储状态信息(idle, in-progress, or completed),以及每个(非空闲的)worker机器的ID。
4.3 Fault Tolerance
  • Background:MapReduce计算通常在成千上万的机器上面执行,难免遇到机器故障,所以必须容错。
  • Worker Failure
    • master会周期性地向每个worker发送ping信号,如果没有收到回复,则将该worker设置为不可用状态,然后将已经在该worker中完成的Map任务或正在该worker中执行的Map或Reduce任务设置为初始的idle状态,并重新分配给其他worker。
    • 在不可用的worker中已经完成的Map任务需要重新执行,因为Map任务的输出是存储在已经不可用的worker的本地磁盘中(不可访问);而已经完成的Reduce任务不需要重新执行,因为Reduce任务输出的结果是存储在global file system中。
    • Map任务重新分配的worker信息需要通知所有负责Reduce任务的workers。
  • Master Failure
    • 周期性地将集群的当前状态以及checkpoints写入磁盘中,如果master进程终止后,重新启动一个新的master进程并利用存储在磁盘中的数据恢复到最新一次的checkpoint的状态。
  • Semantics in the Presence of Failures
    • 通过Map任务和Reduce任务的原子性提交来保证输入输出的确定性(保持和整个程序无错顺序执行的输出结果一致)
    • 当一个Map任务完成后,worker向master发送中间结果位置信息,master仅保存一次同一Map任务的结果信息。
    • 当一个Reduce任务完成后,worker原子性地将暂存输出文件重命名为最终输出文件。
4.4 Locality
  • 在分配任务时,master会考虑输入文件的位置信息,并尝试在包含相应输入数据副本的机器上分配Map任务。如果做不到,它会尝试给在该任务的输入数据副本附近的worker分配一个Map任务。
  • 通过利用数据的本地性以减小网络带宽开销。
4.5 Task Granularity
  • M和R的取值一般比worker机器的数量大得多,通过使每个worker承担多个不同的任务来实现动态的负载均衡同时加速一个不可用worker的恢复(当一个负责某些Map任务的worker变为不可用时,其他所有worker可以分担这些任务)。
  • master需要进行O(M + R)次调度决策和使用O(M * R)的空间保存状态信息。
4.6 Backup Tasks
  • straggler:某个worker机器花了很长时间去完成剩下的若干个Map或Reduce任务,从而使得整个MapReduce计算花费很长时间
  • solution:当一个MapReduce计算接近完成时,将剩下的正在执行的任务进行备份然后分配给其他空闲的worker,只要其中一个完成某个任务即视该任务已完成。

5. Refinements

  • Partitioning Function
    • 根据用户指定的(Reduce)输出文件数R,设置partition函数,如“hash(key) mod R”
  • Combiner Function
    • 在某些情况下,Map任务会产生大量重复的中间键,通过引入combiner函数来执行Map函数输出结果的部分合并(对应相同键的值),从而减少 Map 和 Reduce之间需要传输的数据量,并且加速了整个MapReduce计算过程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/790634.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DSO9254A安捷伦DSO9254A示波器

181/2461/8938产品概述: 安捷伦DSO9254A的带宽为2.5 GHz,配备15英寸XGA液晶显示屏,采用静音封装,厚度仅为9英寸(23厘米),重量仅为26磅(11.8千克)。DSO9254A集成了一个功…

UE4_自定义反射和折射和法线图

UE4 自定义反射和折射和法线图 2020-05-22 09:36 将ReflectionVector和反射图像进行ViewAlignedReflection,输出的textrue和相机位置CameraPosition的onePlus进行Dot点乘之后乘以一个float系数反射度,输出给固有色,就有反射效果了。球型反射。 折射&…

Coze工作流介绍(一)

Coze工作流介绍 工作流支持通过可视化的方式,对插件、大语言模型、代码块等功能进行组合,从而实现复杂、稳定的业务流程编排,例如旅行规划、报告分析等。 当目标任务场景包含较多的步骤,且对输出结果的准确性、格式有严格要求时…

JAVAEE—Callable接口,ReentrantLock,synchronized的工作过程

文章目录 Callable接口的用法Callable与FutureTask类 加锁的工作过程什么是偏向锁呢?举个例子 轻量级锁重量级锁 ReentrantLockReentrantLock 的用法: Callable接口的用法 Callable 是一个 interface . 相当于把线程封装了一个 “返回值”. 方便程序猿借助多线程的…

分布式IO模块PLC扩展模拟量模块

BL200是一款结构紧凑、体积小的分布式IO耦合器,支持ModbusTCP协议,采用嵌入式硬件,主频380Mhz,基于LinuxOS,采用独特的MAC层数据交换技术的双网口技术实现级联,中间设备宕机不影响后面设备的数据传输,可支持高达32个AI、DI、DO、热电阻、热电偶、RS485等种类的IO板,广泛应用于工…

Ubuntu20.04使用Neo4j导入CSV数据可视化知识图谱

1.安装JDK( Ubuntu20.04 JDK11) sudo apt-get install openjdk-11-jdk -y java -version which java ls -l /usr/bin/java ls -l /etc/alternatives/java ls -l /usr/lib/jvm/java-11-openjdk-amd64/bin/java确认安装路径为/usr/lib/jvm/java-11-openjd…

openGauss 基本功能和特性

基本功能和特性 背景信息 openGauss是一个单机数据库,具备关系型数据库的基本功能,以及企业特性的增强功能。 基本功能 标准SQL支持 支持标准的SQL92/SQL99/SQL2003/SQL2011规范,支持GBK、GB18030、GB18030_2022、UTF-8、SQL ASCII以及Lat…

Celery的任务流

Celery的任务流 在之前调用任务的时候只是使用delay()和apply_async()方法。但是有时我们并不想简单的执行单个异步任务,比如说需要将某个异步任务的结果作为另一个异步任务的参数或者需要将多个异步任务并行执行,返回一组返回值,为了实现此…

STL是什么?如何理解STL?

文章目录 1. 什么是STL2. STL的版本3. STL的六大组件4. 如何学习STL5.STL的缺陷 1. 什么是STL STL(standard template libaray-标准模板库):是C标准库的重要组成部分,不仅是一个可复用的组件库,而且是一个包罗数据结构与算法的软件框架。 2. …

OpenHarmony实战开发-使用一次开发多端部署实现一多设置典型页面

介绍 本示例展示了设置应用的典型页面,其在小窗口和大窗口有不同的显示效果,体现一次开发、多端部署的能力。 1.本示例使用一次开发多端部署中介绍的自适应布局能力和响应式布局能力进行多设备(或多窗口尺寸)适配,保…

WebGIS 之 vue3+vite+ceisum

1.项目搭建node版本在16以上 1.1创建项目 npm create vite 项目名 1.2选择框架 vuejavaScript 1.3进入项目安装依赖 cd 项目名 npm install 1.4安装cesium依赖 pnpm i cesium vite-plugin-cesium 1.5修改vite.config.js文件 import { defineConfig } from vite import vue fr…

x-cmd-pkg | gojq - 基于 Go 编写的 jq 工具

简介 gojq 是由 itchyny 基于 Go 编写的 jq 工具。用户还可以将 gojq 作为库嵌入到自己的 Go 产品中。 首次用户 本文的 demo 展现了如何通过 x-cmd 快速使用 gojq 。x-cmd 也提供了gojq 1分钟教程可以帮你快速入门。 功能特点 功能强大:提供了类似jq的功能&am…

RK3568 RTC驱动实验

RK3568 RTC驱动实验 1. RTC简介 ​ RTC 也就是实时时钟,用于记录当前系统时间,对于 Linux 系统而言时间是非常重要的,使用 Linux 设备的时候也需要查看时间。RTC是Linux的时间系统。 ​ RTC 设备驱动是一个标准的字符设备驱动,…

基于Python的微博旅游情感分析、微博舆论可视化系统

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…

wordvect嵌入和bert嵌入的区别

Word2Vec 嵌入和 BERT 嵌入之间有几个关键区别: 训练方式: Word2Vec:Word2Vec 是一个基于神经网络的词嵌入模型,它通过训练一个浅层的神经网络来学习单词的分布式表示。它有两种训练方式:连续词袋模型(CBOW…

【数据库】SQLite3 中文存储

SQLite3中文 1. C语言宽字符 从C95开始,C语言提供 <wchar.h>和<wctype.h> 用于处理宽字符(wide characters)。宽字符类型为 wchar_t。char 类型有的操作函数,wchar_t 都有对应的函数。 #include <stdio.h> #include <stdlib.h> #include <st…

Python网络爬虫(三):Selenium--以携程酒店为例

1 Selenium简介 Selenium是一个用于网站应用程序自动化的工具&#xff0c;它可以直接运行在浏览器中&#xff0c;就像真正的用户在操作一样。它相当于一个机器人&#xff0c;可以模拟人类在浏览器上的一些行为&#xff0c;比如输入文本、点击、回车等。Selenium支持多种浏览器&…

记录一次官网访问很慢的情况

客户查看云监控,带宽未超限,客户取的是1分钟的原生值,也就是1分钟也是个平均值。 但是客户的原始值&#xff0c;其实就是1分钟内的平均值。所以客户的瞬时超限&#xff0c;其实是看不出来的。但是后端同事从实时监控里面可以看到超限的情况。 客户升带宽后&#xff0c; 发现还…

Flutter 应用数据持久化指南

1. 介绍 1.1 什么是数据持久化&#xff1f; 数据持久化是指将应用程序中的数据保存在持久存储介质&#xff08;如硬盘、数据库等&#xff09;中的过程。在计算机科学领域&#xff0c;持久化数据是指数据在程序退出或系统关机后仍然存在的能力。这种持久性使得数据可以在不同的…

是德科技keysight 33621A波形发生器

181/2461/8938产品概述&#xff1a; 与上一代DDS波形发生器相比&#xff0c;采用独家Trueform技术的安捷伦HP 33621A波形发生器具有更高的性能、保真度和灵活性。安捷伦HP 33621A 120 MHz、单通道、Trueform arbs&#xff0c;带时序控制和64 MSa存储器&#xff0c;1 ps抖动&am…