Redis的高可用(主从复制、哨兵模式、集群)的概述及部署

目录

一、Redis主从复制

1、Redis的主从复制的概念

2、Redis主从复制的作用

①数据冗余:

②故障恢复:

③负载均衡:

④高可用基石:

3、Redis主从复制的流程

4、Redis主从复制的搭建

4.1、配置环境以及安装包

4.2所有主机安装redis

4.3修改master节点Redis的配置文件

4.4、修改slave节点的redis配置文件

4.5验证主从效果

二、Redis的哨兵模式

1、哨兵模式的原理

2、哨兵模式的作用

①监控:

③通知:

3、哨兵模式的结构

①哨兵节点:

②数据节点:

4、哨兵模式的搭建

4.1配置环境

4.2、修改redis的配置文件(所有操作节点)

4.3启动哨兵模式

4.3启动哨兵模式

4.4故障模拟

4.5验证结果

三、Redis集群模式

1、集群的作用

2、Redis集群的数据分片

3、搭建Redis集群模式


一、Redis主从复制

1、Redis的主从复制的概念

主从复制就是将一台Redis服务器的数据,复制到其他的Redis服务器。分为主节点(master)跟从节点(slave);数据的复制是单向的,只能从主节点到从节点。

2、Redis主从复制的作用

①数据冗余:

主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。

②故障恢复:

当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复:实际上是一种服务的冗余。

③负载均衡:

在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。

④高可用基石:

除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础

3、Redis主从复制的流程

①启动slave进程,它会向master发送一个sync的数据同步请求,请求连接。

②主进程会fork一个子进程,然后会产生RDB文件(完全备份的文件)的过程。此时客户端还在持续的写入redis。

③rdb文件持久化完成之后,主redis会将rdb文件和缓存的命令推送给从服务器。

④然后经过复制,推送完成之后,主redis会持续的同步操作命令。利用AOF(增量备份)持久化功能。

⑤在下一台redis接入主从复制之前,会持续利用AOF的方式,同步数据给从服务器。

4、Redis主从复制的搭建

4.1、配置环境以及安装包
主机操作系统IP地址软件 / 安装包 / 工具
MasterCentOS7192.168.170.111redis-5.0.7.tar.gz
Slave1CentOS7192.168.170.113redis-5.0.7.tar.gz
Slave2CentOS7192.168.170.114redis-5.0.7.tar.gz
4.2所有主机安装redis
systemctl stop firewalld
setenforce 0yum install -y gcc gcc-c++ maketar zxvf redis-5.0.7.tar.gz -C /opt/cd /opt/redis-5.0.7/
make
make PREFIX=/usr/local/redis installcd /opt/redis-5.0.7/utils
./install_server.sh回车四次,下一步需要手动输入Please select the redis executable path [] /usr/local/redis/bin/redis-server    ln -s /usr/local/redis/bin/* /usr/local/bin/

4.3修改master节点Redis的配置文件

(192.168.170.111)

vim /etc/redis/6379.conf
bind 0.0.0.0            #70行,修改bind 项,0.0.0.0监听所有网段
daemonize yes           #137行,开启守护进程
logfile /var/log/redis_6379.log   #172行,指定日志文件目录
dir /var/lib/redis/6379       #264行,指定工作目录
appendonly yes            #700行,开启AOF持久化功能/etc/init.d/redis_6379 restart

4.4、修改slave节点的redis配置文件

(192.168.170.113 192.168.170.114)

4.5验证主从效果

在master上看日志

在master节点上验证从节点

redis-cli info replication
# Replication
role:master
connected_slaves:2
slave0:ip=192.168.170.113,port=6379,state=online,offset=224,lag=0
slave1:ip=192.168.170.114,port=6379,state=online,offset=224,lag=0

二、Redis的哨兵模式

哨兵模式的核心功能:就是在主从复制的基础上,哨兵引入了主节点的自动故障转移

1、哨兵模式的原理

是一个分布式系统,用于对主从结构中的每台服务器进行监控,当出现故障的时候通过投票机制选择新的master,并将所有slave连接新的master。所以整个运行哨兵的集群的数量不得少于三个节点。

2、哨兵模式的作用

①监控:

哨兵会不断的检查主节点和从节点是否运作正常。

②自动故障转移:
当主节点不能正常工作时,哨兵会自动开始故障转移操作,它会将失效主节点的其中一个节点升级为新的主节点,并让其他从节点成为新的主节点。

③通知:

哨兵可以将故障转移的结果发送给客户端。

3、哨兵模式的结构

哨兵模式由两部分组成:哨兵节点和数据节点

①哨兵节点:

哨兵系统由一个或者多个哨兵节点组成,哨兵节点是特殊的redis节点,不存数据。

②数据节点:

主节点和从节点都是数据节点。

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式,所有节点上都需要部署哨兵模式,哨兵模式会监控所有的 Redis 工作节点是否正常,当 Master 出现问题的时候,因为其他节点与主节点失去联系,因此会投票,投票过半就认为这个 Master 的确出现问题,然后会通知哨兵间,然后从 Slaves 中选取一个作为新的 Master。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。
 

4、哨兵模式的搭建

4.1配置环境

基于主从复制已搭建完成

主机操作系统IP地址软件 / 安装包 / 工具
MasterCentOS7192.168.170.111redis-5.0.7.tar.gz
Slave1CentOS7192.168.170.113redis-5.0.7.tar.gz
Slave2CentOS7192.168.170.114redis-5.0.7.tar.gz
4.2、修改redis的配置文件(所有操作节点)
systemctl stop firewalld
setenforce 0vim /opt/redis-5.0.7/sentinel.conf
protected-mode no               #17行,关闭保护模式
port 26379                    #21行,Redis哨兵默认的监听端口
daemonize yes                 #26行,指定sentinel为后台启动
logfile "/var/log/sentinel.log"         #36行,指定日志存放路径
dir "/var/lib/redis/6379"           #65行,指定数据库存放路径
sentinel monitor mymaster 192.168.170.111 6379 2 #84行,修改 指定该哨兵节点监控192.168.223.10:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
sentinel down-after-milliseconds mymaster 30000 #113行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000   #146行,故障节点的最大超时时间为180000(180秒)
4.3启动哨兵模式

先启动master,再启动slave

cd /opt/redis-5.0.7/
redis-sentinel sentinel.conf &
注意!先启动主服务器,再启动从服务器

4.3启动哨兵模式

先启动master,再启动slave

cd /opt/redis-5.0.7/
redis-sentinel sentinel.conf &
注意!先启动主服务器,再启动从服务器

4.4故障模拟

查看redis-server进程号

ps aux | grep redisroot      57394  0.0  0.1 165620  2660 ?        Ssl  15:12   0:04 /usr/local/redis/bin/redis-server 0.0.0.0:6379
root      58234  0.1  0.1 153844  2720 ?        Ssl  16:34   0:00 redis-sentinel *:26379 [sentinel]
root      58247  0.0  0.0 112676   980 pts/4    R+   16:34   0:00 grep --color=auto redis
[1]+  完成                  redis-sentinel sentinel.conf

然后杀死master节点上的redis-server的进程号

kill -9 55595     #Master节点上redis-server的进程号
4.5验证结果
tail -f /var/log/sentinel.log

三、Redis集群模式

集群就是redis cluster,是redis3.0开始引入的分布式存储方案。

集群由多个节点(node)组成,redis的数据分布在这些节点中。集群的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护:从节点只进行主节点数据和状态信息的复制。

1、集群的作用

数据分区:

数据分区(或称数据分片)是集群最核心的功能。

集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。

Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。
 

高可用:

集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

2、Redis集群的数据分片

Redis集群引入了哈希hash槽的概念

Redis集群有16384个hash槽(编号0-16383)

集群的每个节点复制一部分hash槽

每个key通过crc16校验后对16384取余来决定放置哪个hash槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个节点上进行存取操作

#以3个节点组成的集群为例:

节点1包含0-5460号哈希槽

节点2包含5461-10922号哈希槽

节点3包含10923-16383号哈希槽

#Redis集群的主从复制模型

集群中具有123三个节点,如果节点2失败了整个集群会缺少5461-10922这个范围的槽而不可以用。

为每个节点添加一个从节点1.1、2.1、3.1整个集群便有三个master节点和三个slave节点组成,在节点2失败之后,集群选举2.1为的主节点继续服务。当2和2.1都失败后,集群将不可用。

3、搭建Redis集群模式

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/790586.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式-行为型-中介者模式-Mediator

同事抽象类 public abstract class Colleague {private Mediator mediator;public abstract void play(String data); } 视频同事 public class AudioColleague extends Colleague {public void play(String data) {System.out.println("画外音是:" d…

嵌入式开发中状态模式实现

文章目录 状态模式代码实现代码解释小结 状态模式 状态模式(State Pattern)是一种行为设计模式,它允许对象在内部状态改变时改变它的行为。在嵌入式系统中,状态模式尤其适用于那些根据外部事件或内部条件频繁改变状态并且每种状态…

最新408试卷分析+备考经验分享

408出题再糟糕,你是不是还是要考? 别管出题人出多刁钻的题,大家拿到的卷子都是一样的,要难就都难,要刁钻就一起g... 所以再潜心钻研出题规律或出题套路,不如多花些时间去多复习巩固几遍知识点&#xff01…

ncurses库:一个框架例程源码

初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的,可以在任何平台上使用。 折腾过字符界面下的图形化显示…

3D雷达和相机联合标定:一种灵活且精确的基于目标的外参标定方法

3D雷达和相机联合标定:一种灵活且精确的基于目标的外参标定方法 论文链接:https://arxiv.org/pdf/2307.15264.pdf 附赠自动驾驶学习资料和量产经验:链接 摘要 本文介绍了3D雷达和相机联合标定:一种灵活且精确的基于目标的外参…

精通并发【基础三】:线程安全有哪些思路

不可变 final无锁编程,将数据处理映射到指定的线程中处理ThreadLocal互斥(SyncReentrantLockCAS) 在多线程编程中,线程安全是指当多个线程访问某个类时,这个类始终能表现出正确的行为。实现线程安全可以通过多种方式&…

Android 10.0 双sim卡区分SIM卡1和SIM卡2来电通知功能实现

1.前言 在10.0的rom系统定制化开发中,在一些产品支持双卡双待的功能中,如果两张sim卡都是移动卡,在来电通知中,就不容易区分 到底是哪张sim卡来的电话信息都显示移动信息 所以为了区分sim卡就需要在sim描述的时候 添加是哪张sim卡,接下来就来实现 这些功能 2.双sim卡区…

【C++】编程规范之表达式原则

表达式中变量的位置 在编写表达式时,将变量放置在右边,可以提高代码的可读性和可理解性。这种做法符合自然语言的阅读习惯,使得代码更易于理解。 // Good if (5 x) {// do something }// Avoid if (x 5) {// do something }不变量和资源申…

WPF中动画教程(DoubleAnimation的基本使用)

实现效果 今天以一个交互式小球的例子跟大家分享一下wpf动画中DoubleAnimation的基本使用。该小球会移动到我们鼠标左键或右键点击的地方。 该示例的实现效果如下所示&#xff1a; 页面设计 xaml如下所示&#xff1a; <Window x:Class"AnimationDemo.MainWindow&qu…

vue使用iview导航栏Menu activeName不生效

activeName不生效 一、问题一、解决方案&#xff0c; 一、问题 根据ivew官网的提示&#xff0c;设置了active-name和open-names以后&#xff0c;发现不管是设置静态是数据还是设置动态的数据&#xff0c;都不生效 一、解决方案&#xff0c; 在设置动态名称的时候&#xff0c…

【Erlang】Linux(CentOS7)安装Erlang和RabbitMQ

一、系统环境 查版本对应&#xff0c;CentOS-7&#xff0c;选择Erlang 23.3.4&#xff0c;RabbitMQ 3.9.16 二、操作步骤 安装 Erlang repository curl -s https://packagecloud.io/install/repositories/rabbitmq/erlang/script.rpm.sh | sudo bash安装 Erlang package s…

Yocto理论基础之layer

Yocto理论基础之layer 一、layer介绍二、layer最佳实践三、创建layer 一、layer介绍 在poky源码中我们基本上在每一个meta layer中都能看到一个layer.conf,里面大致内容如下&#xff1a; # We have a conf and classes directory, add to BBPATH BBPATH . ":${LAYERDIR}…

如何使用Python进行文件读写操作?

如何使用Python进行文件读写操作&#xff1f; Python是一种功能强大的编程语言&#xff0c;它提供了丰富的库和工具&#xff0c;使得文件读写操作变得简单而高效。在Python中&#xff0c;可以使用内置的open()函数来进行文件读写操作。下面将详细介绍如何使用Python进行文件读…

【SpringCloud】Ribbon 负载均衡

目 录 一.负载均衡原理二.源码跟踪1. LoadBalancerIntercepor2. LoadBalancerClient3. 负载均衡策略 IRule4. 总结 三.负载均衡策略1.负载均衡策略2.自定义负载均衡策略 四.饥饿加载 在 order-service 中 添加了 LoadBalanced 注解&#xff0c;即可实现负载均衡功能&#xff0c…

Mysql数据库的存储引擎的区别

MyISAM引擎 MyISAM是MySQL的默认数据库引擎&#xff08;5.5版之前&#xff09;。虽然性能极佳&#xff0c;而且提供了大量的特性&#xff0c;包括全文索引、压缩、空间函数等&#xff0c;但MyISAM不支持事务和行级锁&#xff0c;而且最大的缺陷就是崩溃后无法安全恢复。 Inno…

5.2 SSH和交换机端口安全概述

交换机的安全是一个很重要的问题&#xff0c;因为它可能会遭受到一些恶意的攻击&#xff0c;例如MAC泛洪攻击、DHCP欺骗和耗竭攻击、中间人攻击、CDP 攻击和Telnet DoS 攻击等&#xff0c;为了防止交换机被攻击者探测或者控制&#xff0c;必须采取相应的措施来确保交换机的安全…

Spark面试整理-讨论DataFrame和DataSet的区别

在Apache Spark中,DataFrame和Dataset是两种核心的数据结构,它们用于处理结构化数据。尽管它们有很多相似之处,但也存在一些关键的区别。理解这些区别有助于在不同的应用场景中做出适当的选择。 DataFrame 定义:DataFrame是一个分布式的数据集合,类似于关系数据库中的表格…

【Error】Uncaught TypeError: Cannot read properties of undefined (reading ‘get’)

报错原因&#xff1a; 返回值为undefined 解决&#xff1a; vue3可用&#xff1f;

高项(2)信息化和信息系统基础知识1-软件测试-软件需求-软件架构-中间件-数据仓库-七层协议

1.国家信息化体系6要素 法律法规&#xff0c;是保障信息资源&#xff0c;信息资源的开发和利用是核心任务&#xff0c;是国家信息化取得实效的关键信息网络&#xff0c;是基础信息技术应用&#xff0c;是6要素中的龙头信息技术和产业&#xff0c;是物质保障信息化人才&#xff…

RUST语言变量与数据类型使用

使用之前了解: fn main() 表示程序入口点 println!("要输出的内容"); 表示格式化输出 变量与常量声明: let 变量:变量类型 变量值;let mut 变量:变量类型 变量值; const 常量:常量类型 常量值 如果 声明时不指定类型,将根据赋值类型自动推导 变量类型参与下…