类的函数成员(三):拷贝构造函数

一.什么是拷贝构造函数?

1.1 概念

        同一个类的对象在内存中有完全相同的结构,如果作为一个整体进行复制或称拷贝是完全可行的。这个拷贝过程只需要拷贝数据成员,而函数成员是共用的(只有一份拷贝)。
        在建立对象时可用同一类的另一个对象来初始化该对象,这时所用的构造函数称为拷贝构造函数( Copy Constructor)。

        拷贝构造函数的参数必须采用引用类型,但并不限制为const,一般普遍的会加上const限制。如果以类对象作为参数传递到拷贝构造函数,会引起无穷递归。

1.2 代码示例

        代码示例如下:

#include <iostream>using namespace std;class CStudent
{
public:CStudent(int age = 0,int score = 0);~CStudent();//拷贝构造函数 CStudent(const CStudent &stu);private:int age;int score;
};CStudent::CStudent(int age,int score)
{cout<<"Constructor!"<<endl;this->age = age;this->score = score;
}CStudent::~CStudent()
{cout<<"Desconstructor!"<<endl;
}CStudent::CStudent(const CStudent &stu)
{cout<<"Copy constuctor!"<<endl;this->age = stu.age;this->score = stu.score;
}

二.如何实现?

2.1 缺省拷贝构造函数

2.1.1 概念

        如果类中没有给出定义,系统会自动提供缺省拷贝构造函数。

        缺省的拷贝构造函数会按成员语义,依次拷贝每个类成员,亦称为缺省的按成员初始化。

        按成员作拷贝是通过依次拷贝每个数据成员实现的,而不是对整个类对象按位拷贝。

2.1.2 代码示例

        示例代码如下:

#include <iostream>using namespace std;class CStudent
{
public:CStudent(int age = 0,int score = 0);~CStudent();void print_info(void);private:int age;int score;
};CStudent::CStudent(int age,int score)
{cout<<"Constructor! "<<this<<endl;this->age = age;this->score = score;
}CStudent::~CStudent()
{cout<<"Desconstructor! "<<this<<endl;
}void CStudent::print_info(void)
{cout<<"age("<<this<<"): "<<age<<endl;cout<<"score("<<this<<"): "<<score<<endl;	
}int main(int argc, char** argv)
{CStudent stu1(8,90);CStudent stu2(stu1);stu2.print_info();return 0;
}

        运行结果如下图所示。       

         由上图可知:

(1)只调用了一次普通构造函数,用来构造对象stu1。表明,在构造stu2时调用了一个缺省的构造函数,这个函数就是拷贝构造函数。

(2)对象stu2的所有数据成员被初始化为stu1对应数据成员的值。

(3)最后,调用了两次析构函数,用于析构stu1和stu2。

2.2 自定义拷贝构造函数

2.2.1 概念

        通常按成员语义支持已经足够。但在某些情况下,它对类与对象的安全性和处理的正确性还不够,这时就要求类的设计者提供特殊的拷贝构造函数定义。

2.2.2 代码示例

        示例代码如下:

#include <iostream>using namespace std;class CStudent
{
public:CStudent(int age = 0,int score = 0);~CStudent();//拷贝构造函数 CStudent(const CStudent &stu);void print_info(void);
private:int age;int score;
};CStudent::CStudent(int age,int score)
{cout<<"Constructor!"<<endl;this->age = age;this->score = score;
}CStudent::~CStudent()
{cout<<"Desconstructor!"<<endl;
}CStudent::CStudent(const CStudent &stu)
{cout<<"Copy constuctor!"<<endl;this->age = stu.age;this->score = stu.score;
}void CStudent::print_info(void)
{cout<<"age: "<<age<<endl;cout<<"score: "<<score<<endl;	
}int main(int argc, char** argv)
{CStudent stu1(8,90);CStudent stu2(stu1);stu2.print_info();return 0;
}

        运行结果如下图所示。

        由上图可知:

(1)构造stu2对象时,调用了一次自定义的拷贝构造函数。

(2)关注一下自定义构造函数代码,发现在函数域内可通过引用对象访问私有数据成员age和score。

        从逻辑上讲,每个对象有自己的成员函数,访问同类其他对象的私有数据成员应通过该对象的公有函数,不能直接访问。但在物理上只有一个成员函数拷贝,所以直接访问是合理的。

        即,C++有个原则:类的成员函数可以访问私有数据成员。

CStudent::CStudent(const CStudent &stu)
{cout<<"Copy constuctor!"<<endl;this->age = stu.age;this->score = stu.score;
}

三.何时调用?

3.1 用对象初始化对象

        以下两种形式都是用已存在的对象初始化对象:

CStudent stu1(8,90);CStudent stu2(stu1);
或者
CStudent stu2 = stu1;

        以上两种形式是等价的,只是写法上不同。

3.2 给函数传递类的对象参数

       当函数的形参是类的对象时, 一旦调用函数,要在内存新建立一个局部对象,并把实参拷贝到新的对象中。

        代码示例(部分)如下:

void func(CStudent stu)
{cout<<"func"<<endl;	
}int main(int argc, char** argv)
{CStudent stu1(8,90);func(stu1);return 0;
}

        运行结果如下图所示。

        由上图可知。调用func函数时,会调用拷贝构造函数构造一个临时对象传给func。

3.3 函数返回类的对象(部分编译器)

        很多资料提到:如果函数的返回值是类的对象,那么函数执行完成后,返回调用者时会调用拷贝构造函数。其实这不严谨。

        有些编译器在函数返回类的对象时,不会调用拷贝构造函数。下面单独一节详细分析。

四.函数返回类的对象但不调用拷贝构造函数

        本次实验使用64位TDM-GCC 4.9.2编译器。

4.1 示例代码        

#include <iostream>using namespace std;class CStudent
{
public:CStudent(int age = 0,int score = 0);~CStudent();//拷贝构造函数 CStudent(const CStudent &stu);void print_info(void);
private:int age;int score;
};CStudent::CStudent(int age,int score)
{cout<<"Constructor!"<<endl;this->age = age;this->score = score;
}CStudent::~CStudent()
{cout<<"Desconstructor!"<<endl;
}CStudent::CStudent(const CStudent &stu)
{cout<<"Copy constuctor!"<<endl;this->age = stu.age;this->score = stu.score;
}void CStudent::print_info(void)
{cout<<"age: "<<age<<endl;cout<<"score: "<<score<<endl;	
}CStudent func(void)
{CStudent tmp(11,88);return tmp;	
}int main(int argc, char** argv)
{CStudent stu1(8,90);CStudent stu2;stu2 = func();stu2.print_info();return 0;
}

4.2 运行结果

        如下图所示。

        由下图可知:

(1)func函数的返回值是类的对象,但并没有调用拷贝构造函数。

(2)从stu2打印的信息来看,func函数中创建的tmp对象,的确“赋值”给了stu2。这怎么理解?下面看看汇编代码。

4.3 汇编代码

        汇编代码中r8d是指r8寄存器的低32位。

4.3.1 func函数汇编代码    

        完整的汇编代码如下:

push   %rbp
mov    %rsp,%rbp
sub    $0x20,%rsp
mov    %rcx,0x10(%rbp) //rcx存储了对象tmp的地址
mov    $0x58,%r8d   //r8d的低32位初始化为88
mov    $0xb,%edx    //edx初始化为11
mov    0x10(%rbp),%rcx //即是tmp对象地址
callq  0x401530 <CStudent::CStudent(int, int)>
nop
mov    0x10(%rbp),%rax
add    $0x20,%rsp
pop    %rbp
retq   

        如上图中的注释,func函数里的对象tmp的地址是由调用者main函数传入的,即tmp对象是在main函数的堆栈里存储,而不是在func函数的堆栈里。

4.3.2 构造函数汇编代码

           CStudent::CStudent(int, int)函数的完整汇编代码如下:

push   %rbp
mov    %rsp,%rbp
sub    $0x20,%rsp
mov    %rcx,0x10(%rbp)//rcx存储了对象tmp的地址
mov    %edx,0x18(%rbp) //初始化tmp.score的值为11
mov    %r8d,0x20(%rbp) //初始化tmp.age的值为88
lea    0x86ab6(%rip),%rdx        # 0x488000
mov    0x8b17f(%rip),%rcx        # 0x48c6d0 <.refptr._ZSt4cout>
callq  0x46ee10 <_ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_PKc>
mov    0x8b183(%rip),%rdx        # 0x48c6e0 <.refptr._ZSt4endlIcSt11char_traitsIcEERSt13basic_ostreamIT_T0_ES6_>
mov    %rax,%rcx
callq  0x44d500 <_ZNSolsEPFRSoS_E>
mov    0x10(%rbp),%rax
mov    0x18(%rbp),%edx
mov    %edx,(%rax)
mov    0x10(%rbp),%rax
mov    0x20(%rbp),%edx
mov    %edx,0x4(%rax)
add    $0x20,%rsp
pop    %rbp
retq   
retq  

        注意第4~5行代码的注释。构造函数里,初始化了tmp对象的数据成员。

 4.3.3 main函数汇编代码

        main函数的完整汇编代码如下:

push   %rbp
push   %rbx
sub    $0x58,%rsp
lea    0x80(%rsp),%rbp
mov    %ecx,-0x10(%rbp)
mov    %rdx,-0x8(%rbp)
callq  0x40e950 <__main>
lea    -0x50(%rbp),%rax //堆栈偏移0x50的空间,分配给对象stu1.这里rax存储了stu1的地址
mov    $0x5a,%r8d    	//r8的低32位初始化为90
mov    $0x8,%edx     	//edx寄存器初始化为8
mov    %rax,%rcx     	//传递stu1的地址给构造函数
callq  0x401530 <CStudent::CStudent(int, int)>
lea    -0x60(%rbp),%rax //堆栈偏移0x60的空间,分配给对象stu2.这里rax存储了stu2的地址
mov    $0x0,%r8d
mov    $0x0,%edx
mov    %rax,%rcx   		//传递stu2的地址给构造函数
callq  0x401530 <CStudent::CStudent(int, int)>
lea    -0x40(%rbp),%rax	//堆栈偏移0x40的空间,分配给了一个临时对象,暂时命名为m_tmp.这里rax存储了m_tmp的地址
mov    %rax,%rcx		//传递m_tmp的地址给func函数
callq  0x401685 <func()> //func函数里的tmp对象直接使用了main函数创建的m_tmp
mov    -0x40(%rbp),%rax  
mov    %rax,-0x60(%rbp)  //将m_tmp赋值给stu2
lea    -0x40(%rbp),%rax
mov    %rax,%rcx
callq  0x40157e <CStudent::~CStudent()> //析构m_tmp
lea    -0x60(%rbp),%rax
mov    %rax,%rcx
callq  0x401606 <CStudent::print_info()>
mov    $0x0,%ebx
lea    -0x60(%rbp),%rax
mov    %rax,%rcx
callq  0x40157e <CStudent::~CStudent()>
lea    -0x50(%rbp),%rax
mov    %rax,%rcx
callq  0x40157e <CStudent::~CStudent()>
mov    %ebx,%eax
jmp    0x401770 <main(int, char**)+192>
mov    %rax,%rbx
lea    -0x60(%rbp),%rax
mov    %rax,%rcx
callq  0x40157e <CStudent::~CStudent()>
jmp    0x401759 <main(int, char**)+169>
mov    %rax,%rbx
lea    -0x50(%rbp),%rax
mov    %rax,%rcx
callq  0x40157e <CStudent::~CStudent()>
mov    %rbx,%rax
mov    %rax,%rcx
callq  0x40f670 <_Unwind_Resume>
add    $0x58,%rsp
pop    %rbx
pop    %rbp
retq   

        如代码中的注释:

(1)main函数在调用func函数前,创建了一个临时对象,这里给它命名为m_tmp。

(2)m_tmp对象的地址传递给func函数,func函数里的tmp对象直接使用了m_tmp的地址。因此,可以认为,tmp就是m_tmp的别名。

(3)func函数返回后,将m_tmp对象的数据赋值给stu2对象。

(4)最后,析构m_tmp。

        所以,从始至终,没有调用过拷贝构造函数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/785799.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入详解MongoDB索引的数据组织结构

MongoDB&#xff0c;作为最受欢迎的NoSQL数据库之一&#xff0c;以其灵活的数据模型和强大的性能而著称。其中&#xff0c;索引是提高MongoDB查询性能不可或缺的一部分。本文将更加深入地探讨MongoDB索引的数据组织结构&#xff0c;揭示其背后的工作原理和优化策略。 目录 一、…

ngrok使用心得记录

1&#xff0c;官网 https://ngrok.com/ 注册(Sign up for free)账号&#xff0c;这里我使用邮箱注册&#xff0c;本来使用github账号登录的&#xff0c;不过需要一个二次短信确认&#xff0c;而且发短信前要先选择国家&#xff0c;国家列表里没有China86&#xff0c;所以只能选…

每天学点儿Python(3) -- for循环

for循环结构格式如下 for 循环变量 in 遍历对象:语句块 举例一、 for i in "Hello"print(i) 执行结果如下 举例二、 #打印100-999之间的水仙花数 #注意&#xff1a;Python中 / 除法&#xff0c;运输后为浮点数, // 为取除法后的整数&#xff0c;而不是C/C中的注释…

Java与Go的并发世界:理解Work Sharing与Work Stealing

概述 最近在理解Golang中的Per P概念&#xff0c;于是我就去Go的源码中挖呀挖&#xff0c;结果挖到了Go的调度器设计。 Golang的调度器设计文档提到了Go中的P(OS线程)调度器使用的是work-stealing调度算法论文。 论文中提到了两个多线程调度算法&#xff1a;work sharing和wor…

电力设备热设计原理(二)

本篇为西安交通大学本科课程《电力设备设计原理》的笔记。 本篇为这一单元的第二篇笔记。上一篇传送门。 电力设备传导换热 主要讨论稳态导热的计算。 通过单层和多层平壁的传导 如上图所示的大平板是一维传导问题&#xff0c;流过平板的热流量和平板两侧温度和平板厚度之间…

c++的学习之路:6、类和对象(2)

一、 构造函数 如果一个类什么成员都没有&#xff0c;那么他是一个空类吗&#xff1f;在c的创建时&#xff0c;就规定了在类没有成员时&#xff0c;也会有六个默认的成员&#xff0c;简称6个默认成员函数&#xff0c;如下图所示 先介绍一下构造函数&#xff0c;这里就利用代码…

第四百三十六回

文章目录 1. 概念介绍2. 思路与方法2.1 实现思路2.2 实现方法 3. 示例代码4. 内容总结 我们在上一章回中介绍了"不同平台上换行的问题"相关的内容&#xff0c;本章回中将介绍如何在页面上显示蒙板层.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我…

鸿蒙OS开发实例:【ArkTS类库多线程CPU密集型任务TaskPool】

CPU密集型任务是指需要占用系统资源处理大量计算能力的任务&#xff0c;需要长时间运行&#xff0c;这段时间会阻塞线程其它事件的处理&#xff0c;不适宜放在主线程进行。例如图像处理、视频编码、数据分析等。 基于多线程并发机制处理CPU密集型任务可以提高CPU利用率&#x…

AMD GPUs - Radeon™ PRO W7900与NVIDIA 4000系列GPU性能

文心一言 RTX 4090的性能高于AMD Radeon PRO W7900。 RTX 4090具有760亿个晶体管、16384个CUDA核心和24GB高速镁光GDDR6X显存&#xff0c;在4K分辨率的游戏中持续以超过100FPS运行。RTX 4090采用全新的DLSS 3技术&#xff0c;相比3090TI&#xff0c;性能提升可达2~4倍&#x…

STM32F103 CubeMX 使用USB生成键盘设备

STM32F103 CubeMX 使用USB生成键盘设备 基础信息HID8个数组各自的功能 生成代码代码编写添加申明信息main 函数编写HID 修改1. 修改报文描述符2 修改 "usbd_hid.h" 中的申明文件 基础信息 软件版本&#xff1a; stm32cubmx&#xff1a;6.2 keil 5 硬件&#xff1a;…

超分辨率(4)--基于A2N实现图像超分辨率重建

一.项目介绍 已有研究表明&#xff0c;注意力机制对高性能超分辨率模型非常重要。然而&#xff0c;很少有工作真正讨论“为什么注意力会起作用&#xff0c;它又是如何起作用的”。 文章中尝试量化并可视化静态注意力机制并表明&#xff1a;并非所有注意力模块均有益。提出了…

vue3+threejs新手从零开发卡牌游戏(二十):添加卡牌被破坏进入墓地逻辑

在game目录下新建graveyard文件夹存放墓地相关代码&#xff1a; game/graveyard/p1.vue&#xff0c;这里主要设置了墓地group的位置&#xff1a; <template><div></div> </template><script setup lang"ts"> import { reactive, ref,…

Python入门(八)

引入 引入函数 为了减少代码的冗余&#xff0c;减轻我们的工作量&#xff0c;我们常常将代码分块编写&#xff0c;在Python中更是如此&#xff0c;那么我们怎么在一个新的程序文件中调用我们已经编写好程序文件的函数&#xff0c;我们使用import。我们先写一个first.py为例语…

WinForm_初识_事件_消息提示

文章目录 WinForm开发环境的使用软件部署的架构B/S 架构应用程序C/S 架构应用程序 创建 Windows 应用程序窗口介绍查看设计窗体 Form1.cs 后台代码窗体 Form1.cs窗体的常用属性 事件驱动机制事件的应用事件的测试测试事件的级联响应常用控件的事件事件响应的公共方法 消息提示的…

CCIE-02-PPPoE

目录 实验条件网络拓朴实验目标 开始配置R1验证效果 实验条件 网络拓朴 实验目标 R2为PPPoE Server&#xff0c;已预配了相关信息&#xff1b;R1作为PPPoE Client&#xff0c;进行PPPoE拨号 用户名为R1&#xff0c;密码为cisco &#xff0c; 采用CHAP的认证方式&#xff0c;I…

算法学习——LeetCode力扣补充篇3(143. 重排链表、141. 环形链表、205. 同构字符串、1002. 查找共用字符、925. 长按键入)

算法学习——LeetCode力扣补充篇3 143. 重排链表 143. 重排链表 - 力扣&#xff08;LeetCode&#xff09; 描述 给定一个单链表 L 的头节点 head &#xff0c;单链表 L 表示为&#xff1a; L0 → L1 → … → Ln - 1 → Ln 请将其重新排列后变为&#xff1a; L0 → Ln → …

Python学习笔记 - 如何在google Colab中显示图像?

这里是使用的opencv进行图片的读取&#xff0c;自然也是想使用opencv的imshow方法来显示图像&#xff0c;但是在google Colab中不可以使用&#xff0c;所以寻找了一下变通的显示方法。 方法1&#xff1a;使用matplotlib 使用plt需要交换一下r、b通道&#xff0c;否则显示不正常…

第十九章 UML

统一建模语言(Unified Modeling Language&#xff0c; UML )是一种为面向对象系统的产品进行说明、可视化和编制文档的一种标准语言&#xff0c;是非专利的第三代建模和规约语言。 UML 是面向对象设计的建模工具&#xff0c;独立于任何具体程序设计语言。 一、简介 UML 作为一…

正大国际:做qi货靠运气多点还是靠自己学习到认知度?

一个人能赚到自己认知范围以外的钱靠的是运气&#xff0c;能赚到自己认知范围内的钱靠的是能力。期货市场试错成本较高&#xff0c;交易自己熟悉和擅长的领域会大大降低失败概率。期货市场机会很多&#xff0c;陷阱也很多&#xff0c;如何坚持做认知范围内的决策是一个重要的交…

docker部署开源软件的国内镜像站点

下载镜像 docker pull registry.cn-beijing.aliyuncs.com/wuxingge123/le_monitor:latestdocker-compose部署 vim docker-compose.yml version: 3 services:le_monitor:container_name: le_monitorimage: registry.cn-beijing.aliyuncs.com/wuxingge123/le_monitor:latestpo…