预处理指令——那些你可能不知道的概念

         前言:预处理是我们的c语言源代码成为可执行程序的第一个步骤。而宏和预处理指令都是在这个阶段完成。本节内容就是关于宏和预处理指令相关知识点的解析。

目录

预定义符号

#define定义常量

#define定义符号

#define定义宏

带副作用的宏参数 

宏的替换规则

宏相对于函数的特点  

#和##

#

##

  命名约定

undef 

 命令行定义

条件编译 

头文件包含 

如何防止头文件被多次包含:


        

预定义符号

        在c语言之中, 定义了下面这几个宏定义符号。同样的, 因为预定义符号是宏, 它也是在预处理阶段进行处理。

        __LINE__代表文件当前位置的行号;

        __FILE__代表当前的源文件;

        __DATE__代表文件被编译的日期;

        __TIME__代表了文件被编译的时间;

        __STOC__如果编译器遵循标准c语言也就是ANSI C, 那么这个值就是1, 否则就是未定义。

#define定义常量

        #define可以定义常量, 具体做法如下

#include<iostream>
using namespace std;#define MAX 10//定义常量
int main()
{for (int i = 0; i < MAX; i++) {cout << i << endl;}return 0;
}

        这里就是#define定义常量, 常量值应该在常量名后边 。 

        #define定义常量的本质其实就是一种替换, 预处理阶段, 编译器会将源代码中的#define定义的常量进行替换。 什么意思?如下:

        现在我们还是看上面一串代码:

         当预处理之后, 这串代码就变成了:

#include<iostream>
using namespace std;int main()
{for (int i = 0; i < 10; i++) {cout << i << endl;}return 0;
}

        这里的MAX进行了替换。 

        既然#define定义常量的本质是完成替换, 那么在进行#define定义常量的时候需不需要在末尾加上分号?

        答案是不需要, 因为加上分号可能出现以下这种情况:

        这里就出现了一个问题, 当MAX被替换后, for的括号里变成了: “int i = 0; i < 10;;i++", 第二个判断条件和第三个变化条件之间有了两个分号, 相当于for括号里有了四条语句。这就出现了问题。所以, 当我们使用#define定义常量的时候, 不要再末尾加上分号!

        当然, 这里的常量也包括常量字符串

#include<iostream>
using namespace std;#define STR "sdfsd"int main() 
{cout << STR << endl;return 0;
}

#define定义符号

         #define也可以定义符号, 比如:


#include<iostream>
using namespace std;#define FOR for(;;)int main() 
{FOR;return 0;
}

        注意, 这串代码就是一个死循环。 因为FOR是#define定义的符号。 在预处理的时候, FOR被替换成了for(;;),这里面判断条件为空, 恒为真,所以就是一个死循环。 

        #define也可以定义一串很长的代码:

#include<iostream>
using namespace std;#define MYFILE printf("name:%s, line:%s, data:%s",\__FILE__, __LINE__, __DATE__)
int main() 
{MYFILE;return 0;
}

 

        这个红色箭头指向的其实是续行符, 后面不能加空格, 否则续行符无效。续行符之后直接回车换行。 

#define定义宏

        什么是宏, 宏和上面的定义符号和定义常量有什么区别?

        同样的, 宏也是#define定义的一串代码, 但是它和上面的区别是宏是有参数的。定义宏的时候, 参数列表必须紧紧挨着宏名, 否则, 参数列表会被当成宏体。

        如下就是一个宏定义:

#include<iostream>
using namespace std;#define ADD(x, y) x + yint main() 
{int ret = ADD(1, 2);return 0;
}

        这个宏定义的工作原理是这样的, 首先1先传给x, 2传给y, 然后ADD参数列表的x, y的值传给宏体。 再完成替换。

        替换后就是这样的 

#include<iostream>
using namespace std;int main() 
{int ret = 1 + 2;return 0;
}

         现在想一个问题。既然宏是在预处理阶段就完成替换, 那么他是不是比函数的速度快。 因为函数需要在运行的时候调用, 而宏是在预处理阶段就完成替换, 宏体的代码就在相应的位置展开了。

        答案是是的, 宏确实要比函数快。宏在预处理阶段直接完成替换, 不需要去建立栈帧消耗时间。而且, 宏的参数也没有类型:

        参数没有了类型, 就相当于没有了类型检查。 这样有好处也有缺点, 好处是参数没有了类型, 更加的灵活。 但缺点也是如此, 因为宏的参数没有了类型, 没有了类型检查, 代码就容易出现问题。 这说明了宏不易调试的缺点。

        这里说明宏也不全是优点, 他也是有缺点的。

        另外,宏还有另外一个不可忽视的缺点——优先级问题。 现在我们来看这么一串代码。 

#include<iostream>
using namespace std;#define Mul(x, y) x * yint main() 
{int ret = Mul(1 + 3, 2 + 3);return 0;
}

         这一串代码, 宏替换后是这样的: 1 + 3 * 2 + 3;

         这显然与我们的预期不符。如果这里是一个函数的话。 那么参数传送过去就应该是:4 * 5;这样的优先级问题可以成为内部的优先级问题。

        那么, 外部的优先级问题呢?


#include<iostream>
using namespace std;#define ADD(x, y) x + yint main() 
{int ret = ADD(1, 2) * 4;return 0;
}

         如图就是一个外部的优先级问题。 宏替换后代码是这样的: 1 + 2 * 4; 与我们的预期同样不符。我们的预期是这样的: 1 + 2 等于三, 然后3 * 4;

        所以, 这里也涉及到了优先级的问题。 

        我们要解决上面的问题, 那么定义的宏体就应该解决内部和外部的优先级问题。 可以这样定义:

#define ADD(x, y) ((x) + (y))

带副作用的宏参数 

        有一些表达式是有副作用的。 

        比如说++, --符号。 

int main() 
{int a = 0;int b = 1;int a = ++b;return 0;
}

        看这串代码, 前置++对于b来说就是有副作用的。 虽然给a赋值了一个b + 1, 但是b自身的值也发生了改变。 

        我们定义一个求最大值的宏:

#define MAX(x, y) x > y ? x : y

 在这个表达式中, 看似是没有问题的。 但是如果我们使用自增自减符号的时候就有问题。 

#include<iostream>
using namespace std;#define MAX(x, y) x > y ? x : y
int main() 
{int a = 3;int b = 4;int ret = MAX(a++, b++);cout << a << endl;cout << b << endl;cout << ret << endl;return 0;
}

        这个参数是如何进行的呢

        其实, 替换之后应该是这样的:a++ > b++ ? a++ : b++;

        这里的a++和b++都出现了两份

        这里都是后置加加, a++ > b++这里是a的值3和b的值4进行比较。 比较完之后a加一编程4, b加一变成5。然后3 小于4, 执行b++, b的值进行返回, 返回的是五, 但是b此时还进行了一次++, 所以b变成了6. 所以ret为5, a为4, b为6.

         所以如果宏的参数在代码中不知出现一次, 而且宏的参数带有副作用。 那么代码就可能出现问题。 因为宏的参数不是计算之后再传进去, 而是直接进行替换。 

宏的替换规则

         1、在调用宏时, 首先对参数进行检查,看是否包含任何#define定义的符号。如果是, 首先        被替换。 如图:

#include<iostream>
using namespace std;#define MAX(x, y) x > y
#define M 10int main() 
{int a = 3;MAX(a, M);return 0;
}

         这里先进行替换的就是M, 将M替换为10之后再替换MAX, 替换后就是a > 10

        

         注意, 宏参数和#define定义中可以出现其他#define定义的符号, 但是宏不能出现递归。 宏不支持递归。

#include<iostream>
using namespace std;#define MAX(x, y) x > y
#define M 10int main() 
{int a = 3;MAX(a, MAX(a, 1));return 0;
}

        注, 这里并不会进行递归。 他只是将a和1先传参, 替换掉里面的宏定义。 然后得到的结果和a再进行传参, 替换掉外面的宏。

        并且, 字符串中的宏并不会被检测为宏。比如:

#include<iostream>
using namespace std;#define MAX(x, y) x > y
#define M 10int main() 
{int a = 3;const char* a = "dsfsM";return 0;
}

这里字符串中的M就不会被检测为宏, 不会被替换掉。

宏相对于函数的特点  

相比于函数, 宏的特点有这些:1、首先宏不能调试

                                                    2、宏不能进行递归

                                                    3、宏的速度很快, 它是直接代码替换,而不是在运行时建立栈帧。

                                                     4、宏的参数没有类型, 不会进行类型检查 

                                                     5、宏展开会增加代码长度。

                                                     6宏的参数可以出现类型, 但是函数做不到,例如:


#include<iostream>
using namespace std;
#include<stdlib.h>#define Malloc(n, type) (type*)malloc(n * sizeof(type))int main() 
{int* ptr = Malloc(1, int);return 0;
}

在这串代码中, 宏Malloc将1和int这个类型传过去, 但是函数一定做不到。 

#和##

#

        #运算符将宏的一个参数, 直接转化为字符串字面值。 它仅允许出现在待参数的宏的替换列表之中。

        #运算符所执行的操作符可以理解为”字符串化“。

意思就是说我们可以这样定义一个宏:


#include<iostream>
using namespace std;
#include<stdlib.h>#define Print(a, format) printf("the value of " #a " is "format, a); int main() 
{int a = 10;Print(a, "%d");return 0;
}

 

        在这个宏中, #a预处理阶段会被转化为“a", #的作用就是这样, 将一个宏参数转变为字符串字面量形式。 

##

        ##可以把位于两边的符号变成一个符号。 但是这样的链接必须是合法的标识符, 否则结果就是未定义的。 

        

如图, 如果我们想要求处某个类型的最大值, 但是int类型和float的类型都要定义一个求取最大值函数。 这样就很麻烦, 这个时候如果我们定义这样的一个宏, 就可以解决问题。 

#define GEN_MAX(type)    \type type##_max(type x, type y)\{   \return x > y ? x : y ;\}

这个宏其实就可以生成一个函数。 而且type##_max中##将两边的链接, 其实就相当于是type_max。

假如我这里这样传参: 

红色箭头就相当于生成了两个函数。 

 这里我们使用这两个函数:​​​​​​​

这其实就像模板一样。 

 
 命名约定

        一般我们宏都是定义为全大写, 不是宏不会定义为全大写。 但这些也不是一定的。 比如offsetof。        

        (offsetof 的作用是结构体成员相较于结构体其实位置的偏移量。)

undef 

undef的功能就是取消undef对应行之后的宏定义。

 命令行定义

        某些c语言编译器,允许在命令行进行定义符号。当我们要使用一个代码的不同版本的时候, 就可能用到这个命令行定义。 一些机器中大一些, 就可以开大一点的数组。 一些机器种小一些, 就可以开小一点的数组。

条件编译 

       条件编译, 最重要的就是这几个命令:1、#if #endif

比如: #define ……

#if

#endif 

2、多分支:

#if

#elif 

#elif

#endif

3、判断是否被定义

#if defined

或者

#ifdef 

或者

if !defined

或者

ifndef

条件编译就是满足条件就进行编译, 如果不满足条件,就不要进行编译。 

比如if和endif的使用

#if 0#define MAX 10int main()
{printf("%d", MAX);#undef MAXprintf("%d", MAX);return 0;
}#endif

这里面这一串代码在预处理阶段就会被销毁, 相当于被注释掉了。 

#if 1#define MAX 10int main()
{printf("%d", MAX);#undef MAXprintf("%d", MAX);return 0;
}#endif

如果改成1就又会变回来。

 又或者if, elif, endif的使用

#define MAX 0int main()
{#if MAX == 0printf("%d", MAX);#elif MAX != 0printf("%d", MAX);return 0;
}#endif

根据MAX的值, 就会选择编译第一个打印还是第二个打印。

       

头文件包含 

        头文件的包含有两种形式。 一种是双引号“”的形式进行头文件包含。 一种是<>的形式进行头文件包含。 

        双引号的头文件包含形式,是先从原文件目录处寻找, 如果未找到头文件, 那么编译器就像查找库函数头文件一样在标准位置查找头文件。 如果再找不到, 那么就会报错。 

        标准头文件的路径, 再linux环境下, linux标准库的头文件是在/user/include/的路径底下。

        vs2022环境的标准头文件路径是略杂乱的。 一般它是在windowssdk路径之下,这里放的一般是贴近操作系统相关的头文件。 还有一些和c语言语法比较贴近的头文件, 放在了vs2022的路径底下。

        库文件直接去标准路径底下去查找, 如果找不到, 直接报错。

        为什么不让库文件也用“”包含呢?因为库文件是放在标准库里面的, 虽然库文件也可以使用“”进行包含, 但是这样效率就会变低,而且这样不容易区分本地文件和库文件了。

如何防止头文件被多次包含:

        当一个项目中文件数过多, 可能出现头文件重复包含的情况。 如何处理这种情况呢?有两种方法。

        一种就是#pragma once。其实这就是vs之中当我们创建一个头文件时自己加在第一行的一个函数。 

        另一种就是使用刚刚讲过的条件编译。

如图:

#ifndef __TEST_H__#define __TEST_H__//……代码#endif 

        意思就是如过没有定义__TEST_H__, 那么第一行之后的代码就参与编译。 那么第一次我们包含头文件的时候就没有包含__TEST_H__。 这个时候他就会参与编译。然后__TEST_H__被定义。 那么下一次我们再进行这个头文件的包含的时候, 因为__TEST_H__已经被编译过了。 那么第一行代码就为假, 第一行以后的代码就不会被编译。 所以就实现了头文件只包含一次的情况。  

以上, 就是预处理指令的全部内容

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/784945.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

给虚拟机配置静态IP并使用FileZIlla在虚拟机和Windows之间传输文件(ssh和ftp两种方法)

一、配置操作系统网络 &#x1f338;下面的步骤主要是配置虚拟机的静态IP&#xff0c;方便后续用 FikeZilla 在windows和虚拟机之间传输文件&#xff08;否则用默认的ip分配方案为 DHCP ,每一次开机时的ip都是有可能不同的,这样就会导致每次远程连接都需要查看ip地址.&#xf…

mysql执行脚本导入表和数据后中文注释乱码解决

本人在使用不同版本下进行操作时&#xff0c;就会出现中文乱码的问题。例如我本地安装mysql8&#xff0c;服务器安装的是mysql5&#xff0c;然后本地连接服务器的mysql后&#xff0c;执行SQL脚本之后发现中文全部乱码 使用工具查看&#xff0c;注释也都是乱码 解决方案 本地…

C语言键盘输入与屏幕输出——数据的格式化键盘输入

目录 数据的格式化键盘输入 输入数据的格式控制 scanf&#xff08;&#xff09;的格式字符 scanf()的格式修饰符 数据的格式化键盘输入 格式 scanf&#xff08;格式控制字符串&#xff0c;输入地址表&#xff09;&#xff1b; 输入数据的格式控制 格式 scanf&#xff08;…

二. Git基础命令

二. Git基础命令 1. 获取 Git 仓库2. 记录每次更新到仓库2.1 检查当前文件状态2.2 跟踪新文件2.3 暂存已修改的文件2.4 忽略文件2.5 查看已暂存和未暂存的修改2.6 提交更新2.7 跳过使用暂存区域2.8 移除文件2.9 移动文件2.10 版本回退 4. 撤消操作4.1 取消暂存的文件4.2 撤消对…

【opencv】教程代码 —ShapeDescriptors

检测和显示图像的轮廓 在图像中搜索并显示轮廓边缘多边形、轮廓矩形和包围圆 获取包含检测到的轮廓的椭圆和旋转的矩形 图像轮廓检测和轮廓凸包 计算图像中的轮廓的矩&#xff08;包括面积、重心等&#xff09;并进行显示 创建和绘制一个多边形图像然后计算并显示图像上每个点到…

分类预测 | Matlab实现CNN-GRU-Mutilhead-Attention卷积神经网络-门控循环单元融合多头注意力机制多特征分类预测

分类预测 | Matlab实现CNN-GRU-Mutilhead-Attention卷积神经网络-门控循环单元融合多头注意力机制多特征分类预测 目录 分类预测 | Matlab实现CNN-GRU-Mutilhead-Attention卷积神经网络-门控循环单元融合多头注意力机制多特征分类预测分类效果基本介绍模型描述程序设计参考资料…

代码膨胀会破坏开发操作吗,它将如何影响编译时间?

Incredibuild 正潜心研究公司以及客户的未来发展趋势。 过去的一年举步维艰&#xff0c;但聪明的企业总是能够抓住机遇&#xff0c;将大部分业务自动化&#xff0c;保持敏捷度和竞争力&#xff0c;最佳的案例就是游戏工作室。这一年来&#xff0c;用户对新游戏或新版本的期待达…

困难样本挖掘:Hard Sample Mining

Hard Sample Mining Hard Sample Mining&#xff0c;即困难样本挖掘&#xff0c;是目标检测中的一种常用方法。其主要思想是针对训练过程中损失较高的样本&#xff08;即那些难以被正确分类的样本&#xff09;进行挖掘&#xff0c;并将其补充到数据集中重新训练&#xff0c;以…

【React】vite + react 项目,配置项目路径别名 @

vite react 项目&#xff0c;配置项目路径别名 1 安装 types/node2 在 vite.config.ts 中添加配置&#xff1a;3 配置路径别名的提示 使用 vite 开发 react 项目时&#xff0c;可以通过一下步骤配置路径别名&#xff1a; 1 安装 types/node npm i -D types/node2 在 vite.con…

LeetCode-560. 和为 K 的子数组【数组 哈希表 前缀和】

LeetCode-560. 和为 K 的子数组【数组 哈希表 前缀和】 题目描述&#xff1a;解题思路一&#xff1a;一边算前缀和一边统计。这里用哈希表统计前缀和出现的次数&#xff0c;那么和为k的子数组的个数就是当前前缀和-k的个数&#xff0c;即preSums[presum - k]。画个图表述就是&a…

无尘布擦拭过程中的问题及其解决方案

无尘布&#xff0c;作为一种广泛应用于电子、半导体、生物医药等领域的清洁材料&#xff0c;其质量和使用方式直接关系到产品生产的洁净度和质量。然而&#xff0c;在无尘布的擦拭过程中&#xff0c;常常会遇到一些问题&#xff0c;如接触不当的溶剂、胶水选择不当、产品收缩以…

内存管理--柔性数组

本次讲的是&#xff0c;柔性数组&#xff0c;如果哪位小博客想要了解的更多&#xff0c;可以登录下面这个网站&#xff0c;了解详细内容 C语言结构体里的成员数组和指针 | 酷 壳 - CoolShellhttps://coolshell.cn/articles/11377.html 我们就听说过数组&#xff0c;听说过柔性数…

游戏本笔记本更换@添加内存条实操示例@DDR5内存条

文章目录 添加内存条的意义准备工具设备拔出电源适配器并关机&#x1f47a;样机 内存条上的金手指安装过程Notes 安装后开机初次开机速度屏幕显示分辨率和闪烁问题检查安装后的效果 添加内存条的意义 参考双通道内存DDR5多通道内存-CSDN博客 准备工具 准备一个质量差不多的螺…

向量点乘有哪些作用呢

如下&#xff1a; 1.找到两个向量之间的夹角(不用多说) 2.求一个向量投影在另一个向量的投影&#xff1a; 我们把图中b的在a上的投影向量称作b1吧&#xff0c;因为b1就在a上&#xff0c;所以只需要求出b1的大小&#xff0c;然后乘以a的单位向量&#xff0c;我们就得到向量b1了…

Altair® Embed® 嵌入式系统的可视化环境

Altair Embed 嵌入式系统的可视化环境 Altair Embed 是一款成熟的工具&#xff0c;可从框图模型自动生成代码并将其传输到通用控制器硬件来开发嵌入式系统。 基于系统关系图创建工作仿真后&#xff0c;用户即可对硬件控制器自动生成相关代码&#xff0c;并通过硬件在环 (HIL)…

【BlossomConfig】SpringCloud项目是如何对bootstrap配置文件进行加载的?

文章目录 bootstrap配置文件的读取 网关项目源码 RPC项目源码 配置中心项目源码 bootstrap配置文件的读取 我们首先来了解一下springboot是如何做配置管理的。 了解了springboot对配置文件的管理&#xff0c;我们就能知道为什么springcloud类型的项目要使用bootstrap配置文件了…

美国RAKsmart:裸机云站群服务器配置详解

裸机云&#xff0c;也称为物理云&#xff0c;是一种云服务模式&#xff0c;它为用户提供了接近物理机性能的云服务器。而站群服务器&#xff0c;则是为了支持多个网站或应用程序的运行而设计的服务器。美国RAKsmart作为一家知名的云服务提供商&#xff0c;其裸机云站群服务器配…

Proteus 12V to 5V buck电路仿真练习及遇到的一些问题汇总

基础电路仿真实验记录贴&#xff01;&#xff01;&#xff01;如有写的不对的地方欢迎交流指正&#xff01;&#xff01;&#xff01; 平台&#xff1a;PC win10 软件&#xff1a;Proteus8.10 仿真目标&#xff1a;buck降压电路&#xff08;PWM控制输出电压&#xff09; 写在…

八皇后问题解决过程字符串可视化

查找到问题&#xff0c;暂停600毫秒&#xff0c; 穷举本行&#xff0c;200毫秒 返回上一层之前&#xff0c;会弹出回滚上一层&#xff08;4&#xff0c;X&#xff09;&#xff0c;并暂停600毫秒 成功返回时&#xff0c;会弹出上一层具体数据如&#xff08;4&#xff0c;3&a…

Java | Leetcode Java题解之第3题无重复字符的最长子串

题目&#xff1a; 题解&#xff1a; class Solution {public int lengthOfLongestSubstring(String s) {// 哈希集合&#xff0c;记录每个字符是否出现过Set<Character> occ new HashSet<Character>();int n s.length();// 右指针&#xff0c;初始值为 -1&#…