【智能算法】猎人猎物算法(HPO)原理及实现

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献


1.背景

2022年,Naruei等人受到自然界动物猎食过程启发,提出了猎人猎物算法(Hunter-Prey Optimization, HPO)。

2.算法原理

2.1算法思想

HPO模拟了自然界中动物的捕猎过程,算法的核心思想是:猎人追逐被捕猎物远离群体的个体,并根据被捕猎物的平均位置调整自身位置;而被捕猎物也动态调整自身位置以更安全地躲避捕食者。
在这里插入图片描述

2.2算法过程

猎人捕猎

x ( t + 1 ) = x ( t ) + 0.5 [ ( 2 C Z P pos − x ( t ) ) + ( 2 ( 1 − C ) Z μ − x ( t ) ) ] (1) \begin{aligned}\boldsymbol{x}(t+1)&=\boldsymbol{x}(t)+0.5[(2C\boldsymbol{Z}\boldsymbol{P}_{\text{pos}}-\boldsymbol{x}(t))+(2(1-C)\boldsymbol{Z}\boldsymbol{\mu}-\boldsymbol{x}(t))]\end{aligned}\tag{1} x(t+1)=x(t)+0.5[(2CZPposx(t))+(2(1C)Zμx(t))](1)
其中,x(t)表示猎人当前时刻的位置;x(t+1)表示猎人下一时刻的位置;Ppos是当前猎人所追逐猎物的位置,一般选择距离种群平均位置最远个体作为Ppos;μ是当前种群中所有个体位置的平均值;C是探索与开发之间的平衡参数;Z 是算法的自适应参数;μ、C 和 Z 的计算公
式分别为:
μ = 1 N ∑ i = 1 N x i C = 1 − t × ( 0.98 / M a x I t ) Z = R 2 × I D X + R 3 ⊗ ( ∼ I D X ) I D X = R 1 > C (2) \begin{aligned} &\boldsymbol{\mu}=\frac1N\sum_{i=1}^{N}\boldsymbol{x}_{i} \\ &C=1-t\times(0.98/MaxIt) \\ &Z=R2\times\mathbf{IDX}+R3\otimes(\sim\mathbf{IDX}) \\ &\mathbf{IDX}=\mathbf{R}\mathbf{1}>C \end{aligned}\tag{2} μ=N1i=1NxiC=1t×(0.98/MaxIt)Z=R2×IDX+R3(IDX)IDX=R1>C(2)

猎物移动

x i ( t + 1 ) = T p o s + C Z c o s ( 2 π R 4 ) × ( T p o s − x i ( t ) ) (3) x_{i}(t+1)=\boldsymbol{T}_{\mathrm{pos}}+\boldsymbol{CZ}cos(2\pi R4)\times(\boldsymbol{T}_{\mathrm{pos}}-\boldsymbol{x}_{i}(t))\tag{3} xi(t+1)=Tpos+CZcos(2πR4)×(Tposxi(t))(3)
HPO的关键是猎人和猎物的身份选择,判断搜索代理以猎人或猎物的身份来进行信息更新:
x i ( t + 1 ) = { x i ( t ) + 0.5 [ ( 2 C Z P p o s − x i ( t ) ) + ( 2 ( 1 − C ) Z μ − x i ( t ) ) ] , R 5 < β x i ( t + 1 ) = T p o s + C Z c o s ( 2 π R 4 ) × ( T p o s − x i ( t ) ) , o t h e r w i s e (4) \boldsymbol{x}_i(t+1)=\begin{cases}\boldsymbol{x}_i(t)+0.5[(2C\boldsymbol{Z}\boldsymbol{P}_{\mathrm{pos}}-\boldsymbol{x}_i(t))+(2(1-\boldsymbol{C})\boldsymbol{Z}\boldsymbol{\mu}-\boldsymbol{x}_i(t))],\boldsymbol{R}\boldsymbol{5}<\boldsymbol{\beta}\\\boldsymbol{x}_i(t+1)=\boldsymbol{T}_{\mathrm{pos}}+C\boldsymbol{Z}cos(2\pi R4)\times(\boldsymbol{T}_{\mathrm{pos}}-\boldsymbol{x}_i(t)),otherwise\end{cases}\quad\tag{4} xi(t+1)={xi(t)+0.5[(2CZPposxi(t))+(2(1C)Zμxi(t))],R5<βxi(t+1)=Tpos+CZcos(2πR4)×(Tposxi(t)),otherwise(4)
其中,R5是[0,1]内随机数,β为调节参数,值为0.2。如果R5<β,则将该搜索代理视为猎人,根据猎人捕猎机制更新位置;如果R5≥β,则将该搜索代理视为猎物,根据猎物移动机制更新位置。

流程图
在这里插入图片描述

3.结果展示

在这里插入图片描述

4.参考文献

[1] Naruei I, Keynia F, Sabbagh Molahosseini A. Hunter–prey optimization: Algorithm and applications[J]. Soft Computing, 2022, 26(3): 1279-1314.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/782379.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

输出1到10的阶乘--C语言

#include<stdio.h> int fac(int n){if(n<1){return 1;}elsereturn fac(n-1)*n; } int main(){int i, result;for(i1;i<10;i){resultfac(i);printf("%d!%d\n",i,result);}} 输出结果&#xff1a;

Java并发编程基础_Thread类

线程 Thread.class 1. 线程的六种状态 NEW 尚未启动的线程处于此状态。RUNNABLE 在Java虚拟机中执行的线程处于此状态。BLOCKED 被阻塞等待监视器锁定的线程处于此状态。WAITING 正在等待另一个线程执行特定动作的线程处于此状态。TIMED_WAITING 正在等待另一个线程执行动作达到…

C++中浅拷贝和深拷贝对象复制概念

1.浅拷贝&#xff08;Shallow Copy&#xff09;&#xff1a; 浅拷贝是指在对象复制时&#xff0c;只是复制对象的值&#xff0c;而不会复制对象指向的资源。这意味着对象和其副本会指向同一块内存空间&#xff0c;当一个对象改变时&#xff0c;另一个对象也会受到影响。 #inclu…

回溯算法|216.组合总和III

力扣题目链接 class Solution { private:vector<vector<int>> result; // 存放结果集vector<int> path; // 符合条件的结果// targetSum&#xff1a;目标和&#xff0c;也就是题目中的n。// k&#xff1a;题目中要求k个数的集合。// sum&#xff1a;已经收集…

OpenKylin安装Kafka

一、操作系统 openKylin 1.0.1 X86 二、下载安装包 # 安装依赖jdk sudo apt-get update sudo apt-get install default-jdk # 下载kafka mkdir -p /data/software/kafka wget https://archive.apache.org/dist/kafka/2.4.1/kafka_2.13-2.4.1.tgz三、解压安装 # 解压缩Kafka…

springboot项目学习-瑞吉外卖(4)续

1.任务 菜品的添加功能(涉及到两张表的数据添加) 2.菜品添加 功能页面如上&#xff0c;该页面有两个注意点 菜品分类&#xff1a;点击菜品分类后&#xff0c;会展示当前已有菜品&#xff1a;这个功能的实现要从category表里查询数据&#xff0c;然后再做展示口味做法配置&#…

算法题->移动零的C语言和JAVA的双指针解法

使用C语言和JAVA代码通过双指针进行解题 题目描述:给定一个数组 nums&#xff0c;编写一个函数将所有 0 移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序。 理解题意:不改变数组中非零元素的顺序,并把0元素放在非零元素后面. 链接: https://leetcode.cn/problems/m…

Linux——将云服务器作为跳板机,frp实现内网穿透

文章目录 操作步骤1. 准备工作&#xff1a;2. 配置frp服务器端&#xff1a;3. 配置frp客户端&#xff1a;4. 启动frp客户端&#xff1a;5. 测试连接&#xff1a;6. 安全注意事项&#xff1a; 云服务器性能分析阿里云具体操作步骤1. 购买&#xff1a;2. 登录&#xff1a;3. 首次…

springboot企业级抽奖项目业务四 (缓存预热)

缓存预热 为什么要做预热: 当活动真正开始时&#xff0c;需要超高的并发访问活动相关信息 必须把必要的数据提前加载进redis 预热的策略: 在msg中写一个定时任务 每分钟扫描一遍card_game表 把(开始时间 > 当前时间)&& (开始时间 < 当前时间1分钟)的活动及相…

CrossOver软件2024免费 最新版本详细介绍 CrossOver软件好用吗 Mac电脑玩Windows游戏

CrossOver是一款由CodeWeavers公司开发的软件&#xff0c;它可以在Mac和Linux等操作系统上运行Windows软件&#xff0c;而无需在计算机上安装Windows操作系统。这款软件的核心技术是Wine&#xff0c;它是一种在Linux和macOS等操作系统上运行Windows应用程序的开源软件。 Cross…

大语言模型---强化学习

本文章参考&#xff0c;原文链接&#xff1a;https://blog.csdn.net/qq_35812205/article/details/133563158 SFT使用交叉熵损失函数&#xff0c;目标是调整参数使模型输出与标准答案一致&#xff0c;不能从整体把控output质量 RLHF&#xff08;分为奖励模型训练、近端策略优化…

HarmonyOS 应用开发之FA模型绑定Stage模型ServiceExtensionAbility

本文介绍FA模型的三种应用组件如何绑定Stage模型的ServiceExtensionAbility组件。 PageAbility关联访问ServiceExtensionAbility PageAbility关联访问ServiceExtensionAbility和PageAbility关联访问ServiceAbility的方式完全相同。 import featureAbility from ohos.ability…

Adaboost集成学习 | Matlab实现基于ELM-Adaboost极限学习机结合Adaboost集成学习时间序列预测(股票价格预测)

目录 效果一览基本介绍模型设计程序设计参考资料效果一览 基本介绍 基于ELM-Adaboost极限学习机结合Adaboost集成学习时间序列预测(股票价格预测) 单变量时间序列单步预测。 ELM(Extreme Learning Machine,极限学习机)和AdaBoost(Adaptive Boosting,自适应提升)都是机…

c++----list模拟实现

目录 1. list的基本介绍 2. list的基本使用 2.1 list的构造 用法示例 2.2 list迭代器 用法示例 2.3. list容量&#xff08;capacity&#xff09;与访问&#xff08;access) 用法示例 2.4 list modifiers 用法示例 2.5 list的迭代器失效 3.list的模拟实现 3.1…

使用Python实现ID3决策树中特征选择的先后顺序,字节跳动面试真题

def empty1(pri_data): hair [] #[‘长’, ‘短’, ‘短’, ‘长’, ‘短’, ‘短’, ‘长’, ‘长’] voice [] #[‘粗’, ‘粗’, ‘粗’, ‘细’, ‘细’, ‘粗’, ‘粗’, ‘粗’] sex [] #[‘男’, ‘男’, ‘男’, ‘女’, ‘女’, ‘女’, ‘女’, ‘女’] for o…

leetcode.209.长度最小的子数组

题目 给定一个含有 n 个正整数的数组和一个正整数 s &#xff0c;找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组&#xff0c;并返回其长度。如果不存在符合条件的子数组&#xff0c;返回 0。 示例&#xff1a; 输入&#xff1a;s 7, nums [2,3,1,2,4,3] 输出&#…

sqli第24关二次注入

注入点 # Validating the user input........$username $_SESSION["username"];$curr_pass mysql_real_escape_string($_POST[current_password]);$pass mysql_real_escape_string($_POST[password]);$re_pass mysql_real_escape_string($_POST[re_password]);if($p…

wps斜线表头并分别打字教程

wps斜线表头怎么做并分别打字&#xff1a; 1、首先选中我们想要设置的表头。 2、接着右键选中它&#xff0c;点击“设置单元格格式” 3、然后点击上方“边框”选项卡。 4、随后选择图示的斜线&#xff0c;点击“确定” 5、设置完成后&#xff0c;我们只要在其中打字就可以在斜…

算法学习——LeetCode力扣图论篇2

算法学习——LeetCode力扣图论篇2 1020. 飞地的数量 1020. 飞地的数量 - 力扣&#xff08;LeetCode&#xff09; 描述 给你一个大小为 m x n 的二进制矩阵 grid &#xff0c;其中 0 表示一个海洋单元格、1 表示一个陆地单元格。 一次 移动 是指从一个陆地单元格走到另一个相…

优化选址问题 | 基于帝国企鹅算法求解工厂-中心-需求点三级选址问题含Matlab源码

目录 问题代码问题 "帝国企鹅算法"并不是一个广为人知的优化算法,可能是一个特定领域或者特定情境下提出的方法。不过,对于工厂-中心-需求点三级选址问题,它可能是一种启发式优化方法,用于在多个候选位置中选择最优的工厂、中心和需求点位置。 这类问题通常涉及…