无人问津也好,技不如人也罢,都应静下心来,去做该做的事。
最近在学STM32,所以也开贴记录一下主要内容,省的过目即忘。视频教程为江科大(改名江协科技),网站jiangxiekeji.com
本期介绍USART串口代码,主要是串口发送和接收的实验,目前第两个程序都是只支持1个字节的接收。
那现在很多模块,都需要回传大量数据,这时,就需要用数据包的形式进行传输,接收部分也需要按照数据包的格式来接收,这样才能接收多字节数据包。数据包的发送和接收也是比较常见和重要的内容,下期会介绍数据包的发送和接收。
USART基本结构
USART常用函数
在USART.h文件里找即可。
恢复缺省配置、初始化函数、结构体初始化
void USART_DeInit(USART_TypeDef* USARTx);
void USART_Init(USART_TypeDef* USARTx, USART_InitTypeDef* USART_InitStruct);
void USART_StructInit(USART_InitTypeDef* USART_InitStruct);
下面这两个函数是用来配置同步时钟输出的,包括时钟是不是要输出, 时钟的极性相位等参数。需要时钟输出的话。,可以了解一下这两个函数。本期不用。
void USART_ClockInit(USART_TypeDef* USARTx, USART_ClockInitTypeDef* USART_ClockInitStruct);
void USART_ClockStructInit(USART_ClockInitTypeDef* USART_ClockInitStruct);
void USART_Cmd(USART_TypeDef* USARTx, FunctionalState NewState);
void USART_ITConfig(USART_TypeDef* USARTx, uint16_t USART_IT, FunctionalState NewState);
下面这个函数可以开启USART到DMA的触发通道。
void USART_DMACmd(USART_TypeDef* USARTx, uint16_t USART_DMAReq, FunctionalState NewState);
下面这两个函数比较重要,发送数据(写DR寄存器)、 接收数据(读DR寄存器)
void USART_SendData(USART_TypeDef* USARTx, uint16_t Data);
uint16_t USART_ReceiveData(USART_TypeDef* USARTx);
最后四个标志位相关的函数。
FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG);
void USART_ClearFlag(USART_TypeDef* USARTx, uint16_t USART_FLAG);
ITStatus USART_GetITStatus(USART_TypeDef* USARTx, uint16_t USART_IT);
void USART_ClearITPendingBit(USART_TypeDef* USARTx, uint16_t USART_IT);
printf函数的移植方法
再给大家介绍一下printf函数的移植方法。
使用printf之前,我们需要打开工程选项,把Use MicroLIB勾上。MicroLIB是Keil为嵌入式平台优化的一个精简库,我们等会儿要用的printf函数就可以用这个MicroLIB。然后我们还需要对printf进行重定向,将printf函数打印的东西输出到串口,因为printf函数默认是输出到屏幕,我们单片机没有屏幕,所以要进行重定向。
步骤就是,在串口模块里,最开始加上#include<stdio.h>,在后面,重写fputc函数。
/*** 函 数:使用printf需要重定向的底层函数* 参 数:保持原始格式即可,无需变动* 返 回 值:保持原始格式即可,无需变动*/
int fputc(int ch, FILE *f)
{Serial_SendByte(ch); //将printf的底层重定向到自己的发送字节函数return ch;
}/*** 函 数:自己封装的prinf函数* 参 数:format 格式化字符串* 参 数:... 可变的参数列表* 返 回 值:无*/
void Serial_Printf(char *format, ...)
{char String[100]; //定义字符数组va_list arg; //定义可变参数列表数据类型的变量argva_start(arg, format); //从format开始,接收参数列表到arg变量vsprintf(String, format, arg); //使用vsprintf打印格式化字符串和参数列表到字符数组中va_end(arg); //结束变量argSerial_SendString(String); //串口发送字符数组(字符串)
}
/*下述3种方法可实现printf的效果*//*方法1:直接重定向printf,但printf函数只有一个,此方法不能在多处使用*/printf("\r\nNum2=%d", 222); //串口发送printf打印的格式化字符串//需要重定向fputc函数,并在工程选项里勾选Use MicroLIB/*方法2:使用sprintf打印到字符数组,再用串口发送字符数组,此方法打印到字符数组,之后想怎么处理都可以,可在多处使用*/char String[100]; //定义字符数组sprintf(String, "\r\nNum3=%d", 333);//使用sprintf,把格式化字符串打印到字符数组Serial_SendString(String); //串口发送字符数组(字符串)/*方法3:将sprintf函数封装起来,实现专用的printf,此方法就是把方法2封装起来,更加简洁实用,可在多处使用*/Serial_Printf("\r\nNum4=%d", 444); //串口打印字符串,使用自己封装的函数实现printf的效果Serial_Printf("\r\n");
两个程序现象
串口发送
我们可以写一个串口的模块,通过串口通信,把一些数据发送到电脑上的串口助手来显示。
程序里先串口初始化,然后我们会写一些功能函数,比如串口发送一个字节,字节数据是0x41;串口发送一个数组,把这个MyArray数组一起发送出去;还有串口发送字符串、发送数字这些函数。
最后给出3种实现printf函数的方法,printf函数它是一个非常强大的格式化打印字符串函数,在这里,我们也可以把printf函数移植到串口这里来,用于向电脑的串口助手打印消息。
/*下述3种方法可实现printf的效果*//*方法1:直接重定向printf,但printf函数只有一个,此方法不能在多处使用*/printf("\r\nNum2=%d", 222); //串口发送printf打印的格式化字符串//需要重定向fputc函数,并在工程选项里勾选Use MicroLIB/*方法2:使用sprintf打印到字符数组,再用串口发送字符数组,此方法打印到字符数组,之后想怎么处理都可以,可在多处使用*/char String[100]; //定义字符数组sprintf(String, "\r\nNum3=%d", 333);//使用sprintf,把格式化字符串打印到字符数组Serial_SendString(String); //串口发送字符数组(字符串)/*方法3:将sprintf函数封装起来,实现专用的printf,此方法就是把方法2封装起来,更加简洁实用,可在多处使用*/Serial_Printf("\r\nNum4=%d", 444); //串口打印字符串,使用自己封装的函数实现printf的效果Serial_Printf("\r\n");
这里我们通过这个USB转串口模块,把STM32的串口引脚,接到电脑上来。之后电脑端可以打开串口助手的软件,选择一下串口号,其他参数也根据STM32程序的配置来,最后打开串口,按一下STM32的复位键。我们的程序在每次上电之后会通过串口发送一批数据,当切换模式为文本模式时,再按一下复位键,这时,软件就会对刚才的数据进行文本映射,找到每个数据对应的字符,以字符串的形式显示出来。这样,电脑上就能显示Num1=111、Num2=222等等这些文本了。
接线图
通信引脚:这里用的是USART1,所以TXD和RXD要接在STM32的PA9和PA10口。然后,两个设备之间要把负极接在一起, 进行共地。
初始化步骤
根据USART基本结构来初始化。
第一步,开启时钟, 把需要用的USART和GPIO的时钟打开。这里USART1是APB2的外设,其他的都是APB1的外设, 注意一下。
/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); //开启USART1的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //开启GPIOA的时钟
第二步,初始化GPIO。TX引脚是USART外设控制的输出脚,所以要选复用推挽输出。RX引脚是USART外设数据输入脚,所以要选择输入模式,输入模式并不分什么普通输入、复用输入。输入脚,外设和GPIO都可以同时用,一般RX配置是浮空输入或者上拉输入,因为串口波形空闲状态是高电平,所以不使用下拉输入。
这个程序只用到串口发送,所以这里只初始化TX引脚(PA9)就好。
/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure); //将PA9引脚初始化为复用推挽输出
第三步,初始化USART。
/*USART初始化*/USART_InitTypeDef USART_InitStructure; //定义结构体变量USART_InitStructure.USART_BaudRate = 9600; //波特率USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; //硬件流控制,不需要USART_InitStructure.USART_Mode = USART_Mode_Tx; //模式,选择为发送模式USART_InitStructure.USART_Parity = USART_Parity_No; //奇偶校验,不需要USART_InitStructure.USART_StopBits = USART_StopBits_1; //停止位,选择1位USART_InitStructure.USART_WordLength = USART_WordLength_8b; //字长,选择8位USART_Init(USART1, &USART_InitStructure); //将结构体变量交给USART_Init,配置USART1
第四步,使能USART。
/*USART使能*/USART_Cmd(USART1, ENABLE); //使能USART1,串口开始运行
串口常用的函数:发送一个字节,发送一个数组,发送字符串,发送字符形式的数字。
代码展示
在Hardware文件夹下新建串口(Serial).h、.c文件,把串口的驱动函数封装起来。
main函数
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
#include "Serial.h"int main(void)
{/*模块初始化*/OLED_Init(); //OLED初始化Serial_Init(); //串口初始化/*串口基本函数*/Serial_SendByte(0x41); //串口发送一个字节数据0x41uint8_t MyArray[] = {0x42, 0x43, 0x44, 0x45}; //定义数组Serial_SendArray(MyArray, 4); //串口发送一个数组Serial_SendString("\r\nNum1="); //串口发送字符串Serial_SendNumber(111, 3); //串口发送数字/*下述3种方法可实现printf的效果*//*方法1:直接重定向printf,但printf函数只有一个,此方法不能在多处使用*/printf("\r\nNum2=%d", 222); //串口发送printf打印的格式化字符串//需要重定向fputc函数,并在工程选项里勾选Use MicroLIB/*方法2:使用sprintf打印到字符数组,再用串口发送字符数组,此方法打印到字符数组,之后想怎么处理都可以,可在多处使用*/char String[100]; //定义字符数组sprintf(String, "\r\nNum3=%d", 333);//使用sprintf,把格式化字符串打印到字符数组Serial_SendString(String); //串口发送字符数组(字符串)/*方法3:将sprintf函数封装起来,实现专用的printf,此方法就是把方法2封装起来,更加简洁实用,可在多处使用*/Serial_Printf("\r\nNum4=%d", 444); //串口打印字符串,使用自己封装的函数实现printf的效果Serial_Printf("\r\n");while (1){}
}
Serial.h文件
#ifndef __SERIAL_H
#define __SERIAL_H#include <stdio.h>void Serial_Init(void);
void Serial_SendByte(uint8_t Byte);
void Serial_SendArray(uint8_t *Array, uint16_t Length);
void Serial_SendString(char *String);
void Serial_SendNumber(uint32_t Number, uint8_t Length);
void Serial_Printf(char *format, ...);#endif
Serial.c文件
#include "stm32f10x.h" // Device header
#include <stdio.h>
#include <stdarg.h>/*** 函 数:串口初始化* 参 数:无* 返 回 值:无*/
void Serial_Init(void)
{/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); //开启USART1的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //开启GPIOA的时钟/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure); //将PA9引脚初始化为复用推挽输出/*USART初始化*/USART_InitTypeDef USART_InitStructure; //定义结构体变量USART_InitStructure.USART_BaudRate = 9600; //波特率USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; //硬件流控制,不需要USART_InitStructure.USART_Mode = USART_Mode_Tx; //模式,选择为发送模式USART_InitStructure.USART_Parity = USART_Parity_No; //奇偶校验,不需要USART_InitStructure.USART_StopBits = USART_StopBits_1; //停止位,选择1位USART_InitStructure.USART_WordLength = USART_WordLength_8b; //字长,选择8位USART_Init(USART1, &USART_InitStructure); //将结构体变量交给USART_Init,配置USART1/*USART使能*/USART_Cmd(USART1, ENABLE); //使能USART1,串口开始运行
}/*** 函 数:串口发送一个字节* 参 数:Byte 要发送的一个字节* 返 回 值:无*/
void Serial_SendByte(uint8_t Byte)
{USART_SendData(USART1, Byte); //将字节数据写入数据寄存器,写入后USART自动生成时序波形while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); //等待发送完成/*下次写入数据寄存器会自动清除发送完成标志位,故此循环后,无需清除标志位*/
}/*** 函 数:串口发送一个数组* 参 数:Array 要发送数组的首地址* 参 数:Length 要发送数组的长度* 返 回 值:无*/
void Serial_SendArray(uint8_t *Array, uint16_t Length)
{uint16_t i;for (i = 0; i < Length; i ++) //遍历数组{Serial_SendByte(Array[i]); //依次调用Serial_SendByte发送每个字节数据}
}/*** 函 数:串口发送一个字符串* 参 数:String 要发送字符串的首地址* 返 回 值:无*/
void Serial_SendString(char *String)
{uint8_t i;for (i = 0; String[i] != '\0'; i ++)//遍历字符数组(字符串),遇到字符串结束标志位后停止{Serial_SendByte(String[i]); //依次调用Serial_SendByte发送每个字节数据}
}/*** 函 数:次方函数(内部使用)* 返 回 值:返回值等于X的Y次方*/
uint32_t Serial_Pow(uint32_t X, uint32_t Y)
{uint32_t Result = 1; //设置结果初值为1while (Y --) //执行Y次{Result *= X; //将X累乘到结果}return Result;
}/*** 函 数:串口发送数字* 参 数:Number 要发送的数字,范围:0~4294967295* 参 数:Length 要发送数字的长度,范围:0~10* 返 回 值:无*/
void Serial_SendNumber(uint32_t Number, uint8_t Length)
{uint8_t i;for (i = 0; i < Length; i ++) //根据数字长度遍历数字的每一位{Serial_SendByte(Number / Serial_Pow(10, Length - i - 1) % 10 + '0'); //依次调用Serial_SendByte发送每位数字}
}/*** 函 数:使用printf需要重定向的底层函数* 参 数:保持原始格式即可,无需变动* 返 回 值:保持原始格式即可,无需变动*/
int fputc(int ch, FILE *f)
{Serial_SendByte(ch); //将printf的底层重定向到自己的发送字节函数return ch;
}/*** 函 数:自己封装的prinf函数* 参 数:format 格式化字符串* 参 数:... 可变的参数列表* 返 回 值:无*/
void Serial_Printf(char *format, ...)
{char String[100]; //定义字符数组va_list arg; //定义可变参数列表数据类型的变量argva_start(arg, format); //从format开始,接收参数列表到arg变量vsprintf(String, format, arg); //使用vsprintf打印格式化字符串和参数列表到字符数组中va_end(arg); //结束变量argSerial_SendString(String); //串口发送字符数组(字符串)
}
串口发送+接收
这里程序的主体部分是,先判断是否收到数据,如果收到数据,则读取数据,并将数据回传电脑,并且也在OLED上显示一下。实际上在串口中,只能发送二进制数,也就是十六进制的最直接的数据,如果想发送字符,那我们就需要一个数据到字符的映射表,最简单最常用的映射表,就是ASCII码表。在ASCII码表里,0x41这个数,就映射为字符A。所以发送0x41,如果以HEX模式显示,就是数据本身;如果以文本模式显示,它就会先去找一下映射表,最终发现,0x41对应的是字符A,所以就是显示A了。这就是HEX模式和文本模式的区别。
接线图
和串口发送是一样的。
初始化步骤
和串口发送的步骤大体不变,新加PA10,设置为上拉输入、
USART初始化中的MODE新加USART_Mode_Rx、
USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; //模式,发送模式和接收模式均选择
对于串口接收来说,可以使用查询和中断两种方法。如果使用中断,那这里USART初始化就结束了;如果使用中断,那还需要在这里开启中断,配置NVIC。
先演示查询,查询的流程是,在主函数里不断判断RXNE标志位。如果置1了,就说明收到数据了.那再调用ReceiveData,读取DR寄存器,这样就行了。
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
#include "Serial.h"uint8_t RxData; //定义用于接收串口数据的变量int main(void)
{/*模块初始化*/OLED_Init(); //OLED初始化/*显示静态字符串*/OLED_ShowString(1, 1, "RxData:");/*串口初始化*/Serial_Init(); //串口初始化while (1){if (Serial_GetRxFlag() == 1) //检查串口接收数据的标志位{RxData = Serial_GetRxData(); //获取串口接收的数据Serial_SendByte(RxData); //串口将收到的数据回传回去,用于测试OLED_ShowHexNum(1, 8, RxData, 2); //显示串口接收的数据}}
}
中断方法的流程,首先,初始化这里,我们要加上开启中断的代码,配置NVIC。
/*中断输出配置*/USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); //开启串口接收数据的中断/*NVIC中断分组*/NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //配置NVIC为分组2/*NVIC配置*/NVIC_InitTypeDef NVIC_InitStructure; //定义结构体变量NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; //选择配置NVIC的USART1线NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //指定NVIC线路使能NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; //指定NVIC线路的抢占优先级为1NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //指定NVIC线路的响应优先级为1NVIC_Init(&NVIC_InitStructure); //将结构体变量交给NVIC_Init,配置NVIC外设
中断函数
/*** 函 数:获取串口接收标志位* 参 数:无* 返 回 值:串口接收标志位,范围:0~1,接收到数据后,标志位置1,读取后标志位自动清零*/
uint8_t Serial_GetRxFlag(void)
{if (Serial_RxFlag == 1) //如果标志位为1{Serial_RxFlag = 0;return 1; //则返回1,并自动清零标志位}return 0; //如果标志位为0,则返回0
}/*** 函 数:获取串口接收的数据* 参 数:无* 返 回 值:接收的数据,范围:0~255*/
uint8_t Serial_GetRxData(void)
{return Serial_RxData; //返回接收的数据变量
}/*** 函 数:USART1中断函数* 参 数:无* 返 回 值:无* 注意事项:此函数为中断函数,无需调用,中断触发后自动执行* 函数名为预留的指定名称,可以从启动文件复制* 请确保函数名正确,不能有任何差异,否则中断函数将不能进入*/
void USART1_IRQHandler(void)
{if (USART_GetITStatus(USART1, USART_IT_RXNE) == SET) //判断是否是USART1的接收事件触发的中断{Serial_RxData = USART_ReceiveData(USART1); //读取数据寄存器,存放在接收的数据变量Serial_RxFlag = 1; //置接收标志位变量为1USART_ClearITPendingBit(USART1, USART_IT_RXNE); //清除USART1的RXNE标志位//读取数据寄存器会自动清除此标志位//如果已经读取了数据寄存器,也可以不执行此代码}
}