【Golang星辰图】数据处理的航海家:征服数据海洋的航行工具

数据处理的建筑师:用Go语言中构建稳固的数据分析建筑物

前言

数据处理和分析是现代计算机科学中的关键任务之一,而Go语言作为一门现代化的编程语言,也需要强大的数据处理和分析库来支持其在这一领域的应用。本文将介绍几款优秀的数据处理和分析库,它们在Go语言中提供了高效、灵活和简单的数据操作和计算能力。

欢迎订阅专栏:Golang星辰图

文章目录

  • 数据处理的建筑师:用Go语言中构建稳固的数据分析建筑物
    • 前言
    • 1. go-arrow
      • 1.1 介绍
      • 1.2 特点
      • 1.3 使用示例
    • 2. go-parquet
      • 2.1 介绍
      • 2.2 特点
      • 2.3 使用示例
    • 3. go-dataframe
      • 3.1 介绍
      • 3.2 特点
      • 3.3 使用示例
    • 4. go-pandas
      • 4.1 介绍
      • 4.2 特点
      • 4.3 使用示例
    • 5. go-datatable
      • 5.1 介绍
      • 5.2 特点
      • 5.3 使用示例
    • 6. go-spark
      • 6.1 介绍
      • 6.2 特点
      • 6.3 使用示例
    • 总结

1. go-arrow

1.1 介绍

go-arrow是一个用于Go语言的Apache Arrow库,它支持列式内存数据结构和计算。Apache Arrow是一种用于大数据处理的内存数据格式,具有高效的列式存储和跨语言的数据交换能力。go-arrow提供了对Arrow数据格式的读写和操作功能。

1.2 特点

  • 支持高效的列式内存数据结构:go-arrow利用Apache Arrow的列式存储,可以高效地处理大规模数据集,并提供快速的数据操作和计算能力。
  • 跨语言的数据交换能力:由于Apache Arrow是一种跨语言的数据格式,go-arrow可以与其他语言的Arrow库进行数据交换,方便数据在不同系统和平台之间的共享和处理。
  • 简单易用的API:go-arrow提供了简洁明了的API接口,使得数据处理和分析任务变得更加简单和高效。

1.3 使用示例

package mainimport ("fmt""github.com/apache/arrow/go/arrow""github.com/apache/arrow/go/arrow/array"
)func main() {// 创建整型数组ints := []int64{1, 2, 3, 4, 5}intsData := array.NewInt64Data(ints)intsArray := array.NewInt64(intsData)// 创建字符串数组strings := []string{"apple", "banana", "cherry"}stringsData := array.NewStringData(strings)stringsArray := array.NewString(stringsData)// 创建表table := array.NewTable([]arrow.Field{{Name: "ints", Type: arrow.PrimitiveTypes.Int64},{Name: "strings", Type: arrow.BinaryTypes.String},}, []array.Interface{intsArray, stringsArray})// 打印表中的数据for i := 0; i < table.NumRows(); i++ {row := table.Row(i)intValue := row.Column(0).(*array.Int64).Value(i)strValue := row.Column(1).(*array.String).Value(i)fmt.Printf("Row %d: ints=%d, strings=%s\n", i, intValue, strValue)}
}

在上面的示例代码中,我们使用go-arrow创建了一个包含整型和字符串列的表,并打印了表中的数据。通过这个示例,您可以了解到如何使用go-arrow进行数据的创建和操作。

2. go-parquet

2.1 介绍

go-parquet是一个用于Go语言的Parquet库,它支持Parquet列式存储格式的读写。Parquet是一种高效的列式存储格式,适用于大规模数据集的存储和分析。go-parquet提供了对Parquet文件的读写和查询功能。

2.2 特点

  • 高效的列式存储:go-parquet使用Parquet列式存储格式,可以高效地存储和处理大规模数据集,减少存储空间和读取时间。
  • 跨语言的数据交换:Parquet是一种跨语言的存储格式,go-parquet可以与其他语言的Parquet库进行数据交换,实现数据的无缝传递和共享。
  • 支持复杂数据类型:go-parquet支持多种复杂数据类型,如嵌套结构、列表、字典等,可以方便地处理复杂的数据结构。

2.3 使用示例

package mainimport ("fmt""github.com/xitongsys/parquet-go/parquet""github.com/xitongsys/parquet-go/source/local""github.com/xitongsys/parquet-go/writer"
)type Data struct {ID    int32  `parquet:"name=id, type=INT32"`Name  string `parquet:"name=name, type=BYTE_ARRAY"`Age   int32  `parquet:"name=age, type=INT32"`Email string `parquet:"name=email, type=BYTE_ARRAY"`
}func main() {// 创建parquet写入器fw, err := local.NewLocalFileWriter("data.parquet")if err != nil {panic(err)}pw, err := writer.NewParquetWriter(fw, new(Data), 4)if err != nil {panic(err)}// 写入数据for i := 0; i < 10; i++ {data := Data{ID:    int32(i),Name:  fmt.Sprintf("name%d", i),Age:   int32(i + 20),Email: fmt.Sprintf("email%d@example.com", i),}if err := pw.Write(data); err != nil {panic(err)}}// 关闭写入器if err := pw.WriteStop(); err != nil {panic(err)}if err := fw.Close(); err != nil {panic(err)}// 创建parquet阅读器fr, err := local.NewLocalFileReader("data.parquet")if err != nil {panic(err)}pr, err := reader.NewParquetReader(fr, new(Data), 4)if err != nil {panic(err)}// 读取数据for i := 0; i < int(pr.GetNumRows()); i++ {data := new(Data)if err := pr.Read(data); err != nil {panic(err)}fmt.Printf("Data: %+v\n", data)}// 关闭阅读器if err := pr.ReadStop(); err != nil {panic(err)}if err := fr.Close(); err != nil {panic(err)}
}

在上面的示例代码中,我们使用go-parquet创建了一个Parquet文件,并向文件中写入了一些数据。之后,我们使用go-parquet从文件中读取数据,并打印出来。通过这个示例,您可以了解到如何使用go-parquet进行Parquet文件的读写和查询。

3. go-dataframe

3.1 介绍

go-dataframe是一个用于Go语言的数据框架库,它提供了类似Pandas的数据处理和分析功能。数据框架是一种用于处理结构化数据的表格型数据结构,可以方便地进行数据的筛选、聚合、变换等操作。go-dataframe使得在Go语言中进行数据分析变得更加方便和高效。

3.2 特点

  • 类似Pandas的操作:go-dataframe提供了类似Pandas的操作接口,包括数据的筛选、聚合、变换等操作,使得在Go语言中进行数据处理和分析更加方便和灵活。
  • 支持多种数据类型:go-dataframe支持多种常见的数据类型,如整数、浮点数、字符串、日期等,可以处理各种类型的结构化数据。
  • 高性能计算:go-dataframe采用高效的数据结构和算法,可以进行高性能的数据计算,适用于大规模数据集的处理和分析。

3.3 使用示例

package mainimport ("fmt""github.com/go-gota/gota/dataframe""github.com/go-gota/gota/series"
)func main() {// 创建数据帧data := map[string]interface{}{"name":  []string{"Alice", "Bob", "Charlie"},"age":   []int{25, 30, 35},"score": []float64{90.5, 85.0, 95.5},}df := dataframe.LoadMap(data)// 打印数据帧内容fmt.Println(df)// 筛选数据filter := df.Filter(dataframe.F{Colname: "age", Comparator: ">", Comparando: 25}).Subset([]string{"name", "age"})fmt.Println(filter)// 聚合数据summary := df.GroupBy("name").Aggregation([]series.Aggregation{{"age", series.Mean},{"score", series.Max},})fmt.Println(summary)
}

在上面的示例代码中,我们使用go-dataframe创建了一个数据帧,并展示了数据的筛选和聚合操作。通过这个示例,您可以了解到如何使用go-dataframe进行数据的处理和分析。

4. go-pandas

4.1 介绍

go-pandas是一个用于Go语言的Pandas库的实现,它提供了类似Pandas的数据处理和分析功能。Pandas是一个流行的Python数据分析库,它提供了灵活而高效的数据结构和数据操作接口。go-pandas在Go语言中实现了类似的功能,使得在Go语言中进行数据处理和分析更加方便和简单。

4.2 特点

  • 数据结构:go-pandas提供了类似Pandas的数据结构,如Series和DataFrame,可以表示和操作结构化数据。
  • 数据操作:go-pandas支持丰富的数据操作功能,包括数据的筛选、聚合、分组、排序等,可以方便地对数据进行处理和分析。
  • 高性能计算:go-pandas采用了高效的底层算法和数据结构,可以进行高性能的数据计算,适用于大规模数据集的处理和分析。

4.3 使用示例

package mainimport ("fmt""github.com/go-gota/gota/dataframe"
)func main() {// 创建数据帧df := dataframe.ReadCSV("data.csv")// 打印数据帧内容fmt.Println(df)// 筛选数据filteredDf := df.Filter(dataframe.F{Colname:    "age",Comparator: ">",Comparando: 30,})// 打印筛选后的结果fmt.Println(filteredDf)// 聚合数据summaryDf := df.GroupBy("name").Aggregation([]dataframe.Aggregation{{"age", dataframe.Mean},{"score", dataframe.Max},})// 打印聚合后的结果fmt.Println(summaryDf)
}

在上面的示例代码中,我们使用go-pandas读取了一个CSV文件,并展示了数据的筛选和聚合操作。通过这个示例,您可以了解到如何使用go-pandas进行数据的处理和分析。

5. go-datatable

5.1 介绍

go-datatable是一个用于Go语言的数据表格库,它提供了快速而高效的数据处理和分析功能。数据表格是一种用于处理大规模数据的二维表格数据结构,可以方便地进行数据的过滤、排序、计算等操作。go-datatable使得在Go语言中进行数据处理变得更加高效和灵活。

5.2 特点

  • 高性能计算:go-datatable采用了高效的算法和数据结构,可以进行高性能的数据计算,适用于大规模数据集的处理和分析任务。
  • 类似SQL的操作:go-datatable提供了类似SQL的操作接口,如过滤、排序、分组、聚合等,使得数据处理更加直观和灵活。
  • 内存优化:go-datatable针对大规模数据的处理进行了内存优化,可以在有限的内存资源中高效地处理大规模的数据集。

5.3 使用示例

package mainimport ("fmt""github.com/go-gota/gota/dataframe""github.com/lawrsp/go-datatable"
)func main() {// 创建数据表格dt := datatable.NewDataTable()dt.AddColumn("name", "string")dt.AddColumn("age", "int")dt.AddColumn("score", "float64")// 添加数据dt.AddRow("Alice", 25, 90.5)dt.AddRow("Bob", 30, 85.0)dt.AddRow("Charlie", 35, 95.5)// 打印数据表格内容fmt.Println(dt)// 筛选数据filteredDt := dt.FilterByFunc(func(r datatable.Row) bool {age, _ := r.Get("age").(int)return age > 30})// 打印筛选后的结果fmt.Println(filteredDt)// 聚合数据summaryDt := dt.GroupBy("name").Aggregation([]datatable.Aggregation{{Name: "age", Func: "mean"},{Name: "score", Func: "max"},})// 打印聚合后的结果fmt.Println(summaryDt)
}

在上面的示例代码中,我们使用go-datatable创建了一个数据表格,并展示了数据的筛选和聚合操作。通过这个示例,您可以了解到如何使用go-datatable进行数据的处理和分析。

6. go-spark

6.1 介绍

go-spark是一个用于Go语言的Spark库的实现,它提供了类似Spark的分布式数据处理和分析功能。Spark是一个流行的大数据处理框架,它提供了分布式计算和内存计算能力。go-spark在Go语言中实现了类似的功能,使得在Go语言中进行大数据处理和分析更加方便和高效。

6.2 特点

  • 分布式计算:go-spark提供了分布式计算和内存计算的能力,可以处理大规模的数据集和复杂的计算任务。
  • 支持多种数据源:go-spark支持多种常见的数据源,如Hadoop、Kafka、Hive等,使得数据的读取和存储更加灵活和方便。
  • 高性能计算:go-spark采用了高效的算法和数据结构,可以进行高性能的数据计算,适用于大规模数据集的处理和分析。

6.3 使用示例

package mainimport ("fmt""github.com/sparkgo/spark"
)func main() {// 创建Spark上下文sc := spark.NewSparkContext("local[*]", "go-spark-example")// 读取数据data := sc.TextFile("data.txt")// 过滤数据filteredData := data.Filter(func(line string) bool {return len(line) > 10})// 打印过滤后的结果filteredData.Collect().ForEach(func(line string) {fmt.Println(line)})
}

在上面的示例代码中,我们使用go-spark读取了一个文本文件,并展示了数据的过滤操作。通过这个示例,您可以了解到如何使用go-spark进行分布式数据处理和分析。

这是关于数据处理和分析库的内容,包括了go-arrow、go-parquet、go-dataframe、go-pandas、go-datatable和go-spark的介绍、特点和使用示例。以上示例代码仅展示了基本功能,具体使用时可以根据实际需求进行相应的调整和扩展。

总结

数据处理和分析是现代计算机科学中不可或缺的一部分,而在Go语言中进行数据处理和分析需要有强大的库来支持。本文介绍了几款优秀的数据处理和分析库,包括go-arrow、go-parquet和go-dataframe,它们提供了高效、灵活和简单的数据操作和计算能力。通过本文的介绍和示例代码,读者可以了解到这些库的特点和使用方法,并掌握它们在实际场景中的应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/780595.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

多模态大模型:解析未来智能汽车的新引擎

多模态大模型&#xff1a;解析未来智能汽车的新引擎 1. 多模态大模型简介2. 多模态大模型在智能汽车中的应用2.1 感知与认知2.2 智能驾驶辅助2.3 智能交互 随着人工智能技术的不断进步&#xff0c;智能汽车已经从概念变成了现实&#xff0c;成为了当今科技领域的焦点之一。而在…

大模型预测,下一个token何必是文字?

太快了太快了… 大模型的生成技能&#xff0c;已经到了普通人看不懂的境界&#xff01; 它可以根据用户过去5年的体检报告&#xff0c;生成未来第1年、第2年、第3年的体检报告。 你看&#xff0c;这个生成的过程&#xff0c;是不是像极了ChatGPT&#xff0c;根据历史单词预测…

顺序栈、链式栈、顺序队列、链式队列的ADT及其实现

顺序栈ADT及其实现 链式栈ADT及其实现 顺序队列的ADT及其实现 在数组中队首队尾的分配方案 第三中方案&#xff0c;即达到入队出队操作的时间代价是O&#xff08;1&#xff09; 同时可充分利用空间&#xff0c;不会出现空间似乎用完了的假象 时间性能和空间性能发挥到最大 链…

快速上手Spring Cloud 九:服务间通信与消息队列

快速上手Spring Cloud 一&#xff1a;Spring Cloud 简介 快速上手Spring Cloud 二&#xff1a;核心组件解析 快速上手Spring Cloud 三&#xff1a;API网关深入探索与实战应用 快速上手Spring Cloud 四&#xff1a;微服务治理与安全 快速上手Spring Cloud 五&#xff1a;Spring …

短视频矩阵系统---开发源头交付

短视频矩阵系统---开发源头交付 短视频矩阵系统的核心开发步骤包括以下几个方面&#xff1a; 1. 系统设计&#xff1a;根据需求分析&#xff0c;设计出相应的系统架构&#xff0c;包括数据库设计、系统功能模块设计等。 2. 开发基础功能&#xff1a;基础功能包括短视频的上传、…

数据库工具——DBeaver的安装及使用

目录 一、DBeaver介绍 1.定义 2.支持的数据库 3.支持的操作系统 4.特点 二、DBeaver安装及使用 1.服务启动 2.查看连接类型 3.演示连接Mysql数据库 4.连接配置 5.成功连接 6.远程控制 6.1新建数据库 6.2新建数据表 6.3添加字段列 6.4使用SQL编辑器进行编辑 一…

版本 23.0.0 , docker 安装 , docker目录迁移正确方法

docker 安装 docker 安装&#xff0c; https://docs.docker.com/engine/install/ubuntu/ # Add Dockers official GPG key: sudo apt-get update sudo apt-get install ca-certificates curl sudo install -m 0755 -d /etc/apt/keyrings sudo curl -fsSL https://download.do…

前端理论总结(jq)——jQuery九种选择器

(1)、基本选择器 #id&#xff0c;class&#xff0c;element&#xff0c;* (2)、层次选择器 parent > child&#xff0c;prev next &#xff0c;prev ~ siblings (3)、基本过滤器选择器 :first&#xff0c;:last &#xff0c;:not &#xff0c;:even &#xff0c;:odd &…

吉时利KEITHLEY2460数字源表

181/2461/8938产品概述&#xff1a; Keithley 2460 高电流源表源测量单元 (SMU) 将先进的触摸、测试和发明技术带到您的指尖。Keithley 2460 将创新的图形用户界面 (GUI) 与电容式触摸屏技术相结合&#xff0c;使测试变得直观并最大限度地缩短学习曲线&#xff0c;从而帮助工程…

提取单选框的值,并通过ajax传值到后台

<!DOCTYPE html> <html lang"zh" xmlns:th"http://www.thymeleaf.org" xmlns:shiro"http://www.pollix.at/thymeleaf/shiro"> <head><th:block th:include"include :: header(日库存更新提示)" /> </head&…

双向长短期BiLSTM的回归预测-附MATLAB代码

BiLSTM是一种带有正反向连接的长短期记忆网络&#xff08;LSTM&#xff09;。 BiLSTM通过两个独立的LSTM层&#xff0c;一个按时间顺序处理输入&#xff0c;另一个按时间倒序处理输入&#xff0c;分别从正向和反向两个方向捕捉输入序列的特征。具体地&#xff0c;正向LSTM按时…

蓝桥杯物联网竞赛_STM32L071_13_定时器

CubeMx配置LPTIM: counts internal clock events 计数内部时钟事件 prescaler 预分频器 updata end of period 更新期末 kil5配置&#xff1a; 中断回调函数完善一下&#xff1a; void HAL_LPTIM_AutoReloadMatchCallback(LPTIM_HandleTypeDef *hlptim){if(cnt ! 10) cnt…

Python:执行py命令,提示: Can‘t find a default Python.

1.Python运行环境罢工 今天&#xff0c;要运行一个前年用python编写的爬虫程序&#xff0c;先检测python运行环境是否正常&#xff1a; D:\Python38-32\works>c:\windows\py.exe Cant find a default Python. 再试&#xff1a; D:\Python38-32\works>py --list Installe…

c++数字和字符串的转化

std::to_string 可以将各种类型的数字转换为字符串,而 std::stoi 则可以将字符串转换为整数。 std::to_string 函数原型:std::string to_string( T value ); 功能:将各种类型的数字转换为对应的字符串。 参数: value:要转换为字符串的数字,可以是整数类型(如int、long、…

基于单片机的便携式瓦斯检测仪系统设计

**单片机设计介绍&#xff0c;基于单片机的便携式瓦斯检测仪系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的便携式瓦斯检测仪系统设计是一个针对煤矿等工业环境中瓦斯气体浓度检测的重要项目。以下是该设计…

【Qt】QtCreator交叉编译环境配置Qt mkspec

1、问题描述 在QtCreator中配置TI AM437x的交叉编译环境后,编译时报错,错误信息如下 error: gnu/stubs-soft.h: No such file or directory2、原因分析 1)环境变量CC 搜索网络,解决方法为修改交叉编译工具目录下环境配置脚本,即执行source时的文件。 本人环境为:linux…

RN在android/ios手机剪切图片的操作

之前写过一个React Native调用摄像头画面及拍照和保存图片到相册全流程但是这个仅限于调用摄像头拍照并保存图片,今天再写一个版本的操作,这个博客目前实现的有三点操作: 调用摄像头拍照对照片进行剪切从相册选取图片 功能上面来说有两点: 点击按钮可以对摄像头进行拍照,拍完照…

C++进阶,手把手带你学继承

&#x1fa90;&#x1fa90;&#x1fa90;欢迎来到程序员餐厅&#x1f4ab;&#x1f4ab;&#x1f4ab; 主厨&#xff1a;邪王真眼 主厨的主页&#xff1a;Chef‘s blog 所属专栏&#xff1a;c大冒险 总有光环在陨落&#xff0c;总有新星在闪烁 【本节目标】 1.继…

引领2024年的人工智能前景:趋势、预测和可能性(万字长文)

欢迎来到2024年人工智能和技术的可能性之旅。在这里&#xff0c;每一个预测都是一个潜在的窗口&#xff0c;未来充满了创新、变化&#xff0c;更重要的是&#xff0c;机会类似于20世纪50年代的工业革命。50年代见证了数字计算的兴起&#xff0c;重塑了行业和社会规范。今天&…

【面经】2023年软件测试面试题大全(持续更新)附答案

前阵子一位读者告诉我&#xff0c;某位大厂HR给他发了我之前做的面试题答案合集。 这个消息让我开心了一整天&#x1f602;&#xff0c;因为这说明我之前做的面试题系列真的能帮助到部分测试同学&#xff0c;也算是侧面得到了一种认可吧。 坚持可是我们程序员家族的优良传统&a…