【C语言】结构体详解 (二) 内存函数、结构体传参

目录

1、 结构体的内存对齐

1.1、对齐规则

1.2、练习1、练习2(演示对齐规则1、2、3、4)

2、为什么存在内存对齐

2.1、平台原因(移植原因)

2.2、性能原因

2.3、那么如何即满足对齐,又要节省空间呢?

3、修改默认对齐数

4、结构体传参

4.1、将结构体传到函数print中

4.2、将地址传到函数print中

4.3、区别

5、结构体实现位段

5.1、什么是位段

5.2、位段的内存分配

5.3、注意事项

6、谢谢观看


上一篇博客,写了结构体变量的创建、初始化和声明等内容,今天的这篇博客来带大家深入理解结构体的知识点。希望大家多多支持。 

正文 

1、 结构体的内存对齐

首先,抛一个问题:结构体的大小如何计算?

要知道这个题的答案,首先要了解结构体内存对齐

1.1、对齐规则

1、结构体的第一个成员对齐到和结构体变量起始位置偏移量为0的地址处

2、其他成员变量要对齐到某一个数字(对齐数)的整数倍的地址处

3、结构体总大小为最大对齐数的整数倍

4、如果嵌套了结构体,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数中的最大值的整数倍

偏移量:字节与结构体变量开始存放位置之间相偏移的值

对齐数:编译器默认的一个对齐数与该成员变量大小相比  二者之中取。较小值 

       VS中默认的一个对齐数是  8

       Linux中gcc 没有默认对齐数,对齐数就是成员自身的大小

最大对齐数:结构体中每个成员变量都有一个对齐数,所有对齐数中最大的数

1.2、练习1、练习2(演示对齐规则1、2、3、4)

求结构体的大小

练习1、

(演示对齐规则1、2 、3)

找对齐数: 

对齐数: 编译器默认的一个对齐数与该成员变量大小 相比 二者之中取较小值。

c1  的对齐数是 1

i  的对齐数是4

c2  的对齐数是1

对齐规则1: 结构体的第一个成员对齐到和结构体变量起始位置偏移量为0的地址处

如下图:第一个成员变量c1 放在偏移量为0的位置

对齐规则2:其他成员变量要对齐到其对齐数的整数倍的地址处

成员  i  的对齐数是 4,i 从偏移量为4的倍数的位置开始存放,按本题即从偏移量为4的位置开始,向后存放4个字节。 

 成员  c2  的对齐数是 1, c2  从偏移量为1的倍数的位置开始存放,按本题即从偏移量为8的位置开始,向后存放1个字节。

对齐规则3: 结构体总大小为最大对齐数的整数倍

结构体中三个成员的对齐数分别为  1、4、1,则最大对齐数是 4

那么结构体总大小为 4 的整数倍

由上图,三个成员已经占了9个字节的空间,所以不能少于4的2倍为8

则结构体总大小为  4*3=12,  4的3倍

练习2、

(演示对齐规则4)

对齐规则4: 如果嵌套了结构体,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数中的最大值的整数倍

对于 struct S2   (内嵌结构体),其结构体总大小为2*8=16

内嵌结构体的最大对齐数是  8 

内嵌结构体的最大对齐数是  8 ,则在结构体S3中该结构体的对齐数为8 ,大小为16

由上图,该结构体的大小为  4*8=32 

2、为什么存在内存对齐

2.1、平台原因(移植原因)

不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

举例说明:有些平台上结构体成员中 int类型的数据只能存在4的倍数的内存中,此时就需要有内存对齐。

2.2、性能原因

数据结构(特别是栈)应该尽可能的在自然边界上对齐。原因:为了访问未对齐的内存 ,处理器需要做两次内存访问;而对齐的内存访问只需要一次。

例如:

在32为平台下,一次访问4个字节,成员i  在对齐的情况下能被一次读完。

不对齐的情况下(按顺序存放)

所以说,内存对齐损耗了空间,但节省了时间,结构体的内存对齐是拿空间来换取时间的做法。 

2.3、那么如何即满足对齐,又要节省空间呢?

请看下面的例子:(两个结构体中只是更改了成员的顺序)

struct S1中 两个占空间小的char 类型的成员分散排列。

而 struct S2中 两个占空间小的char 类型的成员集中在一起排列。 

所以要即满足对齐,又要节省空间的方法是:让占用空间小的成员尽量集中在一起

3、修改默认对齐数

使用 #pragma 这个预处理命令,可以修改编译器的默认对齐数。

具体使用: 

设置默认对齐数为1,相当于不对齐的情况,所占字节是所有成员的字节大小。

结构体在对齐方式不合适的时候,我们可以自己更改默认对齐数。 

4、结构体传参

结构体传参可以传结构体,也可以传地址。但我们首选传地址。

4.1、将结构体传到函数print中

4.2、将地址传到函数print中

4.3、区别

传结构体:在传结构体时需要创建临时结构体来储存,如果结构体中有成员占内存过大,会在传递时产生时间和空间的巨大开销。

正经解释:

函数传参的时候,参数需要压栈,会有时间和空间上的系统开销。

如果传递一个结构体对象的时候,结构体过大,参数压栈的系统开销较大,所以会导致性能下降。 

故:结构体传参的时候,要传结构体的地址。 

5、结构体实现位段

结构体具有实现位段的能力。

5.1、什么是位段

位段成员必须是int、unsigned int或 signed int,在C99中位段成员类型也可以选择其他类型。 

基本形式:位段成员名后面有一个冒号和一个数字。数字代表该成员所占的bit位数。

这里的A就是位段类型。

5.2、位段的内存分配

  • 位段的空间上是按照以4个字节或1个字节的方式来开辟的。
  • 位段涉及很多的不确定因素,是不能跨平台的。 

 详细开辟方式如结构体。

5.3、注意事项

 不能对位段的成员使用&操作符,这样就不能使用scanf直接给位段的成员输入值,只能是先输入放在一个变量中,然后赋值给位段成员。

如下:

6、谢谢观看

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/780219.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

element-ui inputNumber 组件源码分享

今日简单分享 inputNumber 组件的实现原理,主要从以下四个方面来分享: 1、inputNumber 组件的页面结构 2、inputNumber 组件的属性 3、inputNumber 组件的事件 4、inputNumber 组件的方法 一、inputNumber 组件的页面结构。 二、inputNumber 组件的…

在计算成像中集成物理和学习模型的即插即用方法

即插即用就是把算法的近端算子换成去噪器 摘要 即插即用先验(PnP)是通过物理模型和学习模型的集成来解决计算成像问题的最广泛使用的框架之一。PnP利用高保真物理传感器模型和强大的机器学习方法对数据进行先验建模,以提供最先进的重建算法。PnP算法在最小化数据保…

零基础教程:R语言lavaan结构方程模型(SEM)

查看原文>>>最新基于R语言lavaan结构方程模型(SEM)实践技术应用 基于R语言lavaan程序包,通过理论讲解和实际操作相结合的方式,由浅入深地系统介绍结构方程模型的建立、拟合、评估、筛选和结果展示的全过程。我们筛选大量…

07-工作流设计:如何设计合理的多人开发模式?

一个企业级项目是由多人合作完成的,不同开发者在本地开发完代码之后,可能提交到同一个代码仓库,同一个开发者也可能同时开发几个功能特性。这种多人合作开发、多功能并行开发的特性如果处理不好,就会带来诸如丢失代码、合错代码、…

echarts 旭日图 层级嵌套

基础的可以直接参考官网进行配置。 Echarts旭日图的特点如下: 1 层次结构展示:旭日图适用于展示层次结构数据,通过不同的扇形区域来表示不同层次的数据。每个扇形区域的大小和位置表示了数据的大小和层次关系。 2 渐进式呈现:旭…

RelayAttention:让大型语言模型更高效地处理长提示符

一、前言 虽然大型语言模型 (LLM) 近年来取得了非常显著的进展,也在各种自然语言处理任务中展现出强大的能力。然而,LLM 的在实际的应用落地层面也面临着一些实际挑战,其中之一就是效率和成本问题,导致了在垂直行业实际落地的应用…

【spring】@Primary注解学习

Primary介绍 Primary 是 Spring 框架中的一个注解,用于在多个相同类型的 bean 中指定一个默认的 bean。当 Spring 容器在自动装配时遇到类型冲突,即存在多个相同类型的 bean 时,如果没有使用 Qualifier 或其他方式指定具体的 bean&#xff0…

关于深度学习的 PyTorch 项目如何上手分析?从什么地方切入?

文章目录 PyTorch 项目分析1.背景2.分析流程 PyTorch 项目分析 1.背景 当我们拿到一个 PyTorch 的深度学习项目时,应该怎么入手?怎么去查看代码? 2.分析流程 首先阅读对应项目的 README.md 文件。通过阅读 README.md ,一般可以…

高风险IP来自哪里:探讨IP地址来源及其风险性质

在网络安全领域,高风险IP地址是指那些可能涉及恶意活动或网络攻击的IP地址。了解这些高风险IP地址的来源可以帮助网络管理员更好地识别和应对潜在的安全威胁。本文将探讨高风险IP地址的来源及其风险性质,并提供一些有效的应对措施。 风险IP查询&#xf…

计算机毕业设计Python+Spark知识图谱高考志愿推荐系统 高考数据分析 高考可视化 高考大数据 大数据毕业设计 机器学习 深度学习 人工智能

学院(全称): 专业(全称): 姓名 学号 年级 班级 设计(论文) 题目 基于Spark的高考志愿推荐系统设计与实现 指导教师姓名 职称 拟…

Vulnhub:MY FILE SERVER: 1

目录 信息收集 1、arp 2、nmap 3、whatweb WEB web信息收集 dirmap FTP匿名登录 enum4linux smbclient showmount FTP登录 ssh-kegen ssh登录 提权 系统信息收集 脏牛提权 get root 信息收集 1、arp ┌──(root㉿ru)-[~/kali/vulnhub] └─# arp-scan -l I…

前端bugs

问题: Failed to load plugin typescript-eslint declared in package.json eslint-config-react-app#overrides[0]: Cannot find module eslint/package.json 解决: google了一晚上还得是chatgpt管用 运行以下命令【同时还要注意项目本身使用的Node版…

【2024】使用zabbix监控ESXI 6.5虚拟化系统

本次实验将采用docker部署zabbix 5.2平台监控ESXI 6.5虚拟化系统—————————————————————————— 请自行准备环境: 关于docker部署方案请参考: docker之核心概念与安装 关于docker部署zabbix方案请参考: docker容器方式部署zabbix监控平台 关于ESXI安…

Halcon3D表面平面度检测-平面差值法

//倾斜平面矫正 https://blog.csdn.net/m0_51559565/article/details/137146179前言 通常我们对表面平面度进行检测时,通常使用2种方式。1:通过大卷积核的高斯滤波进行拟合平面,然后求取拟合平面与3D模型间的点间的距离。2:通过平…

Android裁剪图片为波浪形或者曲线形的ImageView

如果需要做一个自定义的波浪效果的进度条,裁剪图片,对ImageView的图片进行裁剪,比如下面2张图,如何实现? 先看下面的效果,看到其实只需要对第一张高亮的图片进行处理即可,灰色状态的作为背景图。…

centos7配置阿里云的镜像站点作为软件包下载源

目录 1、备份 2、下载新的 CentOS-Base.repo 到 /etc/yum.repos.d/ 3、测试 阿里镜像提供的配置方法:centos镜像_centos下载地址_centos安装教程-阿里巴巴开源镜像站 1、备份 [rootlocalhost ~]# mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentO…

第十二章:预处理命令

文章目录 第十二章:预处理命令宏定义无参宏定义带参数的宏定义 文件包含处理 第十二章:预处理命令 作用:由编译预处理程序对程序中的特殊命令作出解释,以产生新的源程序对其进行正式编译 C语言与其他语言的重要区别就是可以使用预…

PTA L2-038 病毒溯源

病毒容易发生变异。某种病毒可以通过突变产生若干变异的毒株,而这些变异的病毒又可能被诱发突变产生第二代变异,如此继续不断变化。 现给定一些病毒之间的变异关系,要求你找出其中最长的一条变异链。 在此假设给出的变异都是由突变引起的&a…

用 AI 编程-释放ChatGPT的力量

最近读了本书,是 Sean A Williams 写的,感觉上还是相当不错的。一本薄薄的英文书,还真是写的相当好。如果你想看,还找不到,可以考虑私信我吧。 ChatGPT for Coders Unlock the Power of AI with ChatGPT: A Comprehens…

Vue2版本封装公共echarts的监听方法

#注意 : 因为一个页面有多个图表,所以封装一个公共的js文件,方便后续使用。 适用于Vue2版本,粘贴即用即可。 1、echartsMixin.js文件如下 // echartsMixin.js import echarts from echartsexport default {data() {return {myC…