第十三届蓝桥杯省赛真题 Java 研究生 组【原卷】

文章目录

发现宝藏

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【宝藏入口】。


第十三届蓝桥杯大赛软件赛省赛
Java 研究生 组

【考生须知】

考试开始后, 选手首先下载题目, 并使用考场现场公布的解压密码解压试题。

考试时间为 4 小时。考试期间选手可浏览自己已经提交的答案, 被浏览的答案允许拷贝。时间截止后,将无法继续提交或浏览答案。

对同一题目, 选手可多次提交答案, 以最后一次提交的答案为准。

选手必须通过浏览器方式提交自己的答案。选手在其它位置的作答或其它方式提交的答案无效。

试题包含 “结果填空” 和 “程序设计” 两种题型。

结果填空题: 要求选手根据题目描述直接填写结果。求解方式不限。不要求源代码。把结果填空的答案直接通过网页提交即可, 不要书写多余的内容。

程序设计题: 要求选手设计的程序对于给定的输入能给出正确的输出结果。考生的程序只有能运行出正确结果才有机会得分。

注意: 在评卷时使用的输入数据与试卷中给出的示例数据可能是不同的。选手的程序必须是通用的, 不能只对试卷中给定的数据有效。

所有源码必须在同一文件中。调试通过后,拷贝提交。

注意: 不要使用 package 语句。

注意:选手代码的主类名必须为: Main, 否则会被判为无效代码。

注意: 如果程序中引用了类库, 在提交时必须将 import 语句与程序的其他部分同时提交。只允许使用 Java 自带的类库。


试题 A: 排列字母

本题总分: 5 分

【问题描述】

小蓝要把一个字符串中的字母按其在字母表中的顺序排列。

例如, LANQIAO 排列后为 AAILNOQ。

又如, GOODGOODSTUDYDAYDAYUP 排列后为 AADDDDDGGOOOOPSTUUYYY

请问对于以下字符串, 排列之后字符串是什么?

WHERETHEREISAWILLTHEREISAWAY

【答案提交】

这是一道结果填空的题, 你只需要算出结果后提交即可。本题的结果为一个由大写字母组成的字符串, 在提交答案时只填写这个字符串, 填写多余的内容将无法得分。


试题 B: 灭鼠先锋

本题总分: 5 分

【问题描述】

灭鼠先锋是一个老少咸宜的棋盘小游戏, 由两人参与, 轮流操作。

灭鼠先锋的棋盘有各种规格, 本题中游戏在两行四列的棋盘上进行。游戏的规则为: 两人轮流操作, 每次可选择在棋盘的一个空位上放置一个棋子, 或在同一行的连续两个空位上各放置一个棋子, 放下棋子后使棋盘放满的一方输掉游戏。

小蓝和小乔一起玩游戏, 小蓝先手, 小乔后手。小蓝可以放置棋子的方法很多, 通过旋转和翻转可以对应如下四种情况:

在这里插入图片描述

其中 0 表示棋盘上的一个方格为空, x \mathrm{x} x 表示该方格已经放置了棋子。

请问, 对于以上四种情况, 如果小蓝和小乔都是按照对自己最优的策略来玩游戏, 小蓝是否能获胜。如果获胜, 请用 V \mathrm{V} V 表示, 否则用 L \mathrm{L} L 表示。请将四种情况的胜负结果挍顺序连接在一起提交。

【答案提交】

这是一道结果填空的题, 你只需要算出结果后提交即可。本题的结果为一个长度为 4 的由大写字母 V \mathrm{V} V L \mathrm{L} L 组成的字符串, 如 VVLL, 在提交答案时只填写这个字符串, 填写多余的内容将无法得分。


试题 C: 质因数个数

时间限制: 5.0 s 5.0 \mathrm{~s} 5.0 s 内存限制: 512.0 M B 512.0 \mathrm{MB} 512.0MB 本题总分: 10 分

【问题描述】

给定正整数 n n n, 请问有多少个质数是 n n n 的约数。

【输入格式】

输入的第一行包含一个整数 n n n

【输出格式】

输出一个整数, 表示 n n n 的质数约数个数。

【样例输入】

396 \begin{array}{llllll}396\end{array} 396

【样例输出】

3 \begin{array}{llllll}3\end{array} 3

【样例说明】

396 有 2 , 3 , 11 2,3,11 2,3,11 三个质数约数。

【评测用例规模与约定】

对于 30 % 30 \% 30% 的评测用例, 1 ≤ n ≤ 10000 1 \leq n \leq 10000 1n10000

对于 60 % 60 \% 60% 的评测用例, 1 ≤ n ≤ 1 0 9 1 \leq n \leq 10^{9} 1n109

对于所有评测用例, 1 ≤ n ≤ 1 0 16 1 \leq n \leq 10^{16} 1n1016


试题 D: 数位排序

时间限制: 1.0 s 1.0 \mathrm{~s} 1.0 s 内存限制: 512.0 M B 512.0 \mathrm{MB} 512.0MB 本题总分: 10 分

【问题描述】

小蓝对一个数的数位之和很感兴趣, 今天他要按照数位之和给数排序。当两个数各个数位之和不同时, 将数位和较小的排在前面, 当数位之和相等时,将数值小的排在前面。

例如, 2022 排在 409 前面, 因为 2022 的数位之和是 6 , 小于 409 的数位之和 13 。

又如, 6 排在 2022 前面, 因为它们的数位之和相同, 而 6 小于 2022 。

给定正整数 n , m n, m n,m, 请问对 1 到 n n n 采用这种方法排序时,排在第 m m m 个的元素是多少?

【输入格式】

输入第一行包含一个正整数 n n n

第二行包含一个正整数 m m m

【输出格式】

输出一行包含一个整数, 表示答案。

【样例输入】

13 \begin{array}{llllll}13\end{array} 13

5 \begin{array}{llllll}5\end{array} 5

【样例输出】

3 \begin{array}{llllll}3\end{array} 3

【样例说明】

1 到 13 的排序为: 1 , 10 , 2 , 11 , 3 , 12 , 4 , 13 , 5 , 6 , 7 , 8 , 9 1,10,2,11,3,12,4,13,5,6,7,8,9 1,10,2,11,3,12,4,13,5,6,7,8,9 。第 5 个数为 3 。

【评测用例规模与约定】

对于 30 % 30 \% 30% 的评测用例, 1 ≤ m ≤ n ≤ 300 1 \leq m \leq n \leq 300 1mn300

对于 50 % 50 \% 50% 的评测用例, 1 ≤ m ≤ n ≤ 1000 1 \leq m \leq n \leq 1000 1mn1000

对于所有评测用例, 1 ≤ m ≤ n ≤ 1 0 6 1 \leq m \leq n \leq 10^{6} 1mn106


试题 E: 蜂巢

时间限制: 1.0 s 1.0 \mathrm{~s} 1.0 s 内存限制: 512.0 M B 512.0 \mathrm{MB} 512.0MB 本题总分: 15 分

【问题描述】

蜂巢由大量的六边形拼接而成, 定义蜂巢中的方向为: 0 表示正西方向, 1 表示西偏北 6 0 ∘ , 2 60^{\circ}, 2 60,2 表示东偏北 6 0 ∘ , 3 60^{\circ}, 3 60,3 表示正东, 4 表示东偏南 6 0 ∘ , 5 60^{\circ}, 5 60,5 表示西偏南 6 0 ∘ 60^{\circ} 60

对于给定的一点 O O O, 我们以 O O O 为原点定义坐标系, 如果一个点 A A A O O O 点先向 d d d 方向走 p p p 步再向 ( d + 2 ) m o d 6 (d+2) \bmod 6 (d+2)mod6 方向 ( d d d 的顺时针 12 0 ∘ 120^{\circ} 120 方向) 走 q q q 步到达, 则这个点的坐标定义为 ( d , p , q ) (d, p, q) (d,p,q) 。在蜂窝中, 一个点的坐标可能有多种。

下图给出了点 B ( 0 , 5 , 3 ) B(0,5,3) B(0,5,3) 和点 C ( 2 , 3 , 2 ) C(2,3,2) C(2,3,2) 的示意。

在这里插入图片描述

给定点 ( d 1 , p 1 , q 1 ) \left(d_{1}, p_{1}, q_{1}\right) (d1,p1,q1) 和点 ( d 2 , p 2 , q 2 ) \left(d_{2}, p_{2}, q_{2}\right) (d2,p2,q2), 请问他们之间最少走多少步可以到达?

【输入格式】

输入一行包含 6 个整数 d 1 , p 1 , q 1 , d 2 , p 2 , q 2 d_{1}, p_{1}, q_{1}, d_{2}, p_{2}, q_{2} d1,p1,q1,d2,p2,q2 表示两个点的坐标, 相邻两个整数之间使用一个空格分隔。

【输出格式】

输出一行包含一个整数表示两点之间最少走多少步可以到达。

【样例输入】

0 5 3 2 3 2 \begin{array}{llllll}0 & 5 & 3 & 2 & 3 & 2\end{array} 053232

【样例输出】

7 \begin{array}{llllll}7\end{array} 7

【评测用例规模与约定】

对于 25 % 25 \% 25% 的评测用例, p 1 , p 2 ≤ 1 0 3 p_{1}, p_{2} \leq 10^{3} p1,p2103;

对于 50 % 50 \% 50% 的评测用例, p 1 , p 2 ≤ 1 0 5 p_{1}, p_{2} \leq 10^{5} p1,p2105;

对于 75 % 75 \% 75% 的评测用例, p 1 , p 2 ≤ 1 0 7 p_{1}, p_{2} \leq 10^{7} p1,p2107;

对于所有评测用例, 0 ≤ d 1 , d 2 ≤ 5 , 0 ≤ q 1 < p 1 ≤ 1 0 9 , 0 ≤ q 2 < p 2 ≤ 1 0 9 0 \leq d_{1}, d_{2} \leq 5,0 \leq q_{1}<p_{1} \leq 10^{9}, 0 \leq q_{2}<p_{2} \leq 10^{9} 0d1,d25,0q1<p1109,0q2<p2109


试题 F : \mathrm{F}: F: 爬树的甲壳虫

时间限制: 1.0 s 1.0 \mathrm{~s} 1.0 s 内存限制: 512.0 M B 512.0 \mathrm{MB} 512.0MB 本题总分: 15 分

【问题描述】

有一只甲壳虫想要爬上一颗高度为 n n n 的树, 它一开始位于树根, 高度为 0 ,当它尝试从高度 i − 1 i-1 i1 爬到高度为 i i i 的位置时有 P i P_{i} Pi 的概率会掉回树根, 求它从树根爬到树顶时,经过的时间的期望值是多少。

【输入格式】

输入第一行包含一个整数 n n n 表示树的高度。

接下来 n n n 行每行包含两个整数 x i , y i x_{i}, y_{i} xi,yi, 用一个空格分隔, 表示 P i = x i y i P_{i}=\frac{x_{i}}{y_{i}} Pi=yixi

【输出格式】

输出一行包含一个整数表示答案, 答案是一个有理数, 请输出答案对质数 998244353 取模的结果。其中有理数 a b \frac{a}{b} ba 对质数 P P P 取模的结果是整数 c c c 满足 0 ≤ c < P 0 \leq c<P 0c<P c ⋅ b ≡ a ( m o d P ) c \cdot b \equiv a(\bmod P) cba(modP)

【样例输入 1】

1 \begin{array}{llllll}1\end{array} 1

1 2 \begin{array}{llllll}1&2\end{array} 12

【样例输出 1】

2 \begin{array}{llllll}2\end{array} 2

【样例输入 2】

3 \begin{array}{llllll}3\end{array} 3

1 2 \begin{array}{llllll}1&2\end{array} 12

3 5 \begin{array}{llllll}3&5\end{array} 35

7 11 \begin{array}{llllll}7&11\end{array} 711

【样例输出 2】

623902744 \begin{array}{llllll}623902744\end{array} 623902744

【评测用例规模与约定】

对于 20 % 20 \% 20% 的评测用例, n ≤ 2 , 1 ≤ x i < y i ≤ 20 n \leq 2,1 \leq x_{i}<y_{i} \leq 20 n2,1xi<yi20

对于 50 % 50 \% 50% 的评测用例, n ≤ 500 , 1 ≤ x i < y i ≤ 200 n \leq 500,1 \leq x_{i}<y_{i} \leq 200 n500,1xi<yi200

对于所有评测用例, 1 ≤ n ≤ 100000 , 1 ≤ x i < y i ≤ 1 0 9 1 \leq n \leq 100000,1 \leq x_{i}<y_{i} \leq 10^{9} 1n100000,1xi<yi109


试题 G: 重新排序

时间限制: 1.0 s 1.0 \mathrm{~s} 1.0 s 内存限制: 512.0 M B 512.0 \mathrm{MB} 512.0MB 本题总分: 20 分

【问题描述】

给定一个数组 A A A 和一些查询 L i , R i L_{i}, R_{i} Li,Ri, 求数组中第 L i L_{i} Li 至第 R i R_{i} Ri 个元素之和。

小蓝觉得这个问题很无聊, 于是他想重新排列一下数组, 使得最终每个查询结果的和尽可能地大。小蓝想知道相比原数组, 所有查询结果的总和最多可以增加多少?

【输入格式】

输入第一行包含一个整数 n n n

第二行包含 n n n 个整数 A 1 , A 2 , ⋯ , A n A_{1}, A_{2}, \cdots, A_{n} A1,A2,,An, 相邻两个整数之间用一个空格分隔。

第三行包含一个整数 m m m 表示查论的数目。

接下来 m m m 行, 每行包含两个整数 L i 、 R i L_{i} 、 R_{i} LiRi, 相邻两个整数之间用一个空格分谝。

【输出格式】

输出一行包含一个整数表示答案。

【样例输入】

5 \begin{array}{lllll}5\end{array} 5

1 2 3 4 5 \begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array} 12345

2 \begin{array}{lllll}2\end{array} 2

1 3 \begin{array}{lllll}1&3\end{array} 13

2 5 \begin{array}{lllll}2&5\end{array} 25

【样例输出】

4 \begin{array}{lllll}4\end{array} 4

【样例说明】

原来的和为 6 + 14 = 20 6+14=20 6+14=20, 重新排列为 ( 1 , 4 , 5 , 2 , 3 ) (1,4,5,2,3) (1,4,5,2,3) 后和为 10 + 14 = 24 10+14=24 10+14=24, 增加了 4 。

【评测用例规模与约定】

对于 30 % 30 \% 30% 的评测用例, n , m ≤ 50 n, m \leq 50 n,m50

对于 50 % 50 \% 50% 的评测用例, n , m ≤ 500 n, m \leq 500 n,m500

对于 70 % 70 \% 70% 的评测用例, n , m ≤ 5000 n, m \leq 5000 n,m5000

对于所有评测用例, 1 ≤ n , m ≤ 1 0 5 , 1 ≤ A i ≤ 1 0 6 , 1 ≤ L i ≤ R i ≤ 1 0 6 1 \leq n, m \leq 10^{5}, 1 \leq A_{i} \leq 10^{6}, 1 \leq L_{i} \leq R_{i} \leq 10^{6} 1n,m105,1Ai106,1LiRi106


试题 H \mathrm{H} H : 技能升级

时间限制: 1.0 s 1.0 \mathrm{~s} 1.0 s 内存限制: 512.0 M B 512.0 \mathrm{MB} 512.0MB 本题总分: 20 分

【问题描述】

小蓝最近正在玩一款 RPG 游戏。他的角色一共有 N N N 个可以加攻击力的技能。其中第 i i i 个技能首次升级可以提升 A i A_{i} Ai 点攻击力, 以后每次升级增加的点数都会减少 B i B_{i} Bi ⌈ A i B i ⌉ \left\lceil\frac{A_i}{B_i}\right\rceil BiAi (上取整) 次之后, 再升级该技能将不会改变攻击力。

现在小蓝可以总计升级 M M M 次技能, 他可以任意选择升级的技能和次数。请你计算小蓝最多可以提高多少点攻击力?

【输入格式】

输入第一行包含两个整数 N N N M M M

以下 N N N 行每行包含两个整数 A i A_{i} Ai B i B_{i} Bi

【输出格式】

输出一行包含一个整数表示答案。

【样例输入】

3 6 \begin{array}{lllll}3&6\end{array} 36

10 5 \begin{array}{lllll}10&5\end{array} 105

9 2 \begin{array}{lllll}9&2\end{array} 92

8 1 \begin{array}{lllll}8&1\end{array} 81

【样例输出】

4 7 \begin{array}{lllll}4&7\end{array} 47

【评测用例规模与约定】

对于 40 % 40 \% 40% 的评测用例, 1 ≤ N , M ≤ 1000 1 \leq N, M \leq 1000 1N,M1000

对于 60 % 60 \% 60% 的评测用例, 1 ≤ N ≤ 1 0 4 , 1 ≤ M ≤ 1 0 7 1 \leq N \leq 10^{4}, 1 \leq M \leq 10^{7} 1N104,1M107

对于所有评测用例, 1 ≤ N ≤ 1 0 5 , 1 ≤ M ≤ 2 × 1 0 9 , 1 ≤ A i , B i ≤ 1 0 6 1 \leq N \leq 10^{5}, 1 \leq M \leq 2 \times 10^{9}, 1 \leq A_{i}, B_{i} \leq 10^{6} 1N105,1M2×109,1Ai,Bi106


试题 I: 最优清零方案

时间限制: 3.0 s 3.0 \mathrm{~s} 3.0 s 内存限制: 512.0 M B 512.0 \mathrm{MB} 512.0MB 本题总分: 25 分

【问题描述】

给定一个长度为 N N N 的数列 A 1 , A 2 , ⋯ , A N A_{1}, A_{2}, \cdots, A_{N} A1,A2,,AN 。现在小蓝想通过若干次操作将这个数列中每个数字清零。

每次操作小蓝可以选择以下两种之一:

  1. 选择一个大于 0 的整数, 将它减去 1 :
  2. 选择连续 K K K 个大于 0 的整数, 将它们各减去 1 。

小蓝最少经过几次操作可以将整个数列清零?

【输入格式】

输入第一行包含两个整数 N N N K K K

第二行包含 N N N 个整数 A 1 , A 2 , ⋯ , A N A_{1}, A_{2}, \cdots, A_{N} A1,A2,,AN

【输出格式】

输出一个整数表示答案。

【样例输入】

4 2 \begin{array}{lllll}4&2\end{array} 42

1 2 3 4 \begin{array}{llll}1 & 2 & 3 & 4\end{array} 1234

【样例输出】

6 \begin{array}{lllll}6\end{array} 6

【评测用例规模与约定】

对于 20 % 20 \% 20% 的评测用例, 1 ≤ K ≤ N ≤ 10 1 \leq K \leq N \leq 10 1KN10

对于 40 % 40 \% 40% 的评测用例, 1 ≤ K ≤ N ≤ 100 1 \leq K \leq N \leq 100 1KN100

对于 50 % 50 \% 50% 的评测用例, 1 ≤ K ≤ N ≤ 1000 1 \leq K \leq N \leq 1000 1KN1000

对于 60 % 60 \% 60% 的评测用例, 1 ≤ K ≤ N ≤ 10000 1 \leq K \leq N \leq 10000 1KN10000

对于 70 % 70 \% 70% 的评测用例, 1 ≤ K ≤ N ≤ 100000 1 \leq K \leq N \leq 100000 1KN100000

对于所有评测用例, 1 ≤ K ≤ N ≤ 1000000 , 0 ≤ A i ≤ 1000000 1 \leq K \leq N \leq 1000000,0 \leq A_{i} \leq 1000000 1KN1000000,0Ai1000000


试题 J : \mathrm{J}: J: 推导部分和

时间限制: 1.0 s 1.0 \mathrm{~s} 1.0 s 内存限制: 512.0 M B 512.0 \mathrm{MB} 512.0MB 本题总分: 25 分

【问题描述】

对于一个长度为 N N N 的整数数列 A 1 , A 2 , ⋯ A N A_{1}, A_{2}, \cdots A_{N} A1,A2,AN, 小蓝想知道下标 l l l r r r 的部分和 ∑ i = l r = A l + A l + 1 + ⋯ + A r \sum_{i=l}^{r}=A_{l}+A_{l+1}+\cdots+A_{r} i=lr=Al+Al+1++Ar 是多少?

然而, 小蓝并不知道数列中每个数的值是多少, 他只知道它的 M M M 个部分和的值。其中第 i i i 个部分和是下标 l i l_{i} li r i r_{i} ri 的部分和 ∑ j = l i r i = A l i + A l i + 1 + ⋯ + A r i \sum_{j=l_{i}}^{r_{i}}=A_{l_{i}}+A_{l_{i}+1}+\cdots+A_{r_{i}} j=liri=Ali+Ali+1++Ari,值是 S i S_{i} Si

【输入格式】

第一行包含 3 个整数 N 、 M N 、 M NM Q Q Q 。分别代表数组长度、已知的部分和数量和询问的部分和数量。

接下来 M M M 行, 每行包含 3 个整数 l i , r i , S i l_{i}, r_{i}, S_{i} li,ri,Si

接下来 Q Q Q 行, 每行包含 2 个整数 l l l r r r, 代表一个小蓝想知道的部分和。

【输出格式】

对于每个询问, 输出一行包含一个整数表示答案。如果答案无法确定, 输出 UNKNOWN。

【样例输入】

5 3 3 \begin{array}{lll}5 & 3 & 3 \end{array} 533

1 5 15 \begin{array}{lll}1 & 5 & 15\end{array} 1515

4 5 9 \begin{array}{lll}4 & 5 & 9\end{array} 459

2 3 5 \begin{array}{lll}2& 3& 5\end{array} 235

1 5 \begin{array}{lll}1& 5 \end{array} 15

1 3 \begin{array}{lll}1& 3\end{array} 13

1 2 \begin{array}{lll}1&2\end{array} 12

【样例输出】

1 5 \begin{array}{lll}1& 5\end{array} 15

6 \begin{array}{lll}6\end{array} 6

U N K N O W N \begin{array}{lll}UNKNOWN\end{array} UNKNOWN

【评测用例规模与约定】

对于 10 % 10 \% 10% 的评测用例, 1 ≤ N , M , Q ≤ 10 , − 100 ≤ S i ≤ 100 1 \leq N, M, Q \leq 10,-100 \leq S_{i} \leq 100 1N,M,Q10,100Si100

对于 20 % 20 \% 20% 的评测用例, 1 ≤ N , M , Q ≤ 20 , − 1000 ≤ S i ≤ 1000 1 \leq N, M, Q \leq 20,-1000 \leq S_{i} \leq 1000 1N,M,Q20,1000Si1000

对于 30 % 30 \% 30% 的评测用例, 1 ≤ N , M , Q ≤ 50 , − 10000 ≤ S i ≤ 10000 1 \leq N, M, Q \leq 50,-10000 \leq S_{i} \leq 10000 1N,M,Q50,10000Si10000

对于 40 % 40 \% 40% 的评测用例, 1 ≤ N , M , Q ≤ 1000 , − 1 0 6 ≤ S i ≤ 1 0 6 1 \leq N, M, Q \leq 1000,-10^{6} \leq S_{i} \leq 10^{6} 1N,M,Q1000,106Si106

对于 60 % 60 \% 60% 的评测用例, 1 ≤ N , M , Q ≤ 10000 , − 1 0 9 ≤ S i ≤ 1 0 9 1 \leq N, M, Q \leq 10000,-10^{9} \leq S_{i} \leq 10^{9} 1N,M,Q10000,109Si109

对于所有评测用例, 1 ≤ N , M , Q ≤ 1 0 5 , − 1 0 12 ≤ S i ≤ 1 0 12 , 1 ≤ l i ≤ r i ≤ N 1 \leq N, M, Q \leq 10^{5},-10^{12} \leq S_{i} \leq 10^{12}, 1 \leq l_{i} \leq r_{i} \leq N 1N,M,Q105,1012Si1012,1liriN,

1 ≤ l ≤ r ≤ N 1 \leq l \leq r \leq N 1lrN 。数据保证没有矛盾。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/779445.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java基础之算数运算符的初级用法

运算符 运算符: 对字面量或者变量进行操作的符号 表达式: 用运算符把字面量或者变量连接起来,符合java语法的式子就可以称为表达式 不同运算符连接的表达式体现的是不同类型的表达式 一 .算数运算符 实践一下 加 减 乘 运行结果: 除 取模 运行结果 练习: 数值拆分 需求…

Nginx_简介 + Linux系统下详细安装教程指路

安装教程指路 可参看该视频【尚硅谷Nginx教程&#xff08;亿级流量nginx架构设计&#xff09;】 https://www.bilibili.com/video/BV1yS4y1N76R/?p2&share_sourcecopy_web&vd_source4c2f33f3ba1a0dd45bfdf574befd0069 的p2-p7。从安装centos虚拟机到在虚拟机上安装ng…

Golang-Gorm-快速上手

Gorm文档 GORM文档地址 安装依赖 go get -u "gorm.io/driver/mysql"go get -u "gorm.io/gorm"连接数据库 默认连接方式 func main() {// 参考 https://github.com/go-sql-driver/mysql#dsn-data-source-name 获取详情dsn : "user:passtcp(127.0.0…

Multisim14.0破解安装教程

Multisim14.0中文破解版是一款相当优秀的专业化SPICE仿真标准环境&#xff0c;Multisim14.0中文版功能强悍&#xff0c;为用户提供了所见即所得的设计环境、互动式的仿真界面、动态显示元件、具有3D效果的仿真电路、虚拟仪表、分析功能与图形显示窗口等等。Multisim破解版操作简…

Docker命令及部署Java项目

文章目录 简介Docker镜像镜像列表查找镜像拉取镜像删除镜像镜像标签 Docker容器容器启动容器查看容器停止和重启后台模式和进入强制停止容器清理停止的容器容器错误日志容器别名及操作 Docker部署Java项目 简介 Docker是一种容器化技术&#xff0c;可以帮助开发者轻松打包应用…

【数据分析案列】--- 北京某平台二手房可视化数据分析

一、引言 本案列基于北京某平台的二手房数据&#xff0c;通过数据可视化的方式对二手房市场进行分析。通过对获取的数据进行清冼&#xff08;至关重要&#xff09;&#xff0c;对房屋价格、面积、有无电梯等因素的可视化展示&#xff0c;我们可以深入了解北京二手房市场的特点…

vue3+threejs新手从零开发卡牌游戏(十四):调整卡组位置,添加玩家生命值HP和法力值Mana信息

由于之前的卡组位置占了玩家信息的位置&#xff0c;所以这里将它调整到site区域&#xff1a; 修改game/site/p1.vue&#xff0c;在site右下角添加一个卡组区域&#xff1a; // 初始化己方战域 const init () > {let sitePlane scene.getObjectByName("己方战域Plan…

CCSDS CONVOLUTIONAL CODING 卷积码 规范

文章目录 3 CONVOLUTIONAL CODING3.1 overview3.2 general3.2.1 ATTACHED SYNC MARKER3.2.2 DATA RANDOMIZATION3.2.3 FRAME VALIDATION3.2.4 QUANTIZATION 3.3 BASIC CONVOLUTIONAL CODE SPECIFICATION3.4 PUNCTURED CONVOLUTIONAL CODES matlab中的 comm.ConvolutionalEncode…

pip永久修改镜像地址

修改命令&#xff1a; pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple/ 效果&#xff1a; 会在C:\Users\PC(用户名)\AppData\Roaming\pip目录下新增或修改文件pip.ini 文件内容&#xff1a; [global] index-url https://pypi.tuna.tsinghua.e…

4.模板-数组类封装

文章目录 功能代码运行结果 功能 利用模板进行数组类封装&#xff0c;在代码实现过程中&#xff0c;使用了 1.operator重载&#xff0c;利用深拷贝防止浅拷贝问题&#xff1b; 2.operator[]重载&#xff0c;确保可以使用[]来仿真数组元素&#xff1b; 3.尾插法、尾删法、返回数…

PyTorch深度学习

一、深度学习的概念 如上所示&#xff0c;人工智能包含了机器学习和深度学习&#xff0c;其中深度学习是机器学习的一种特殊的学习方法&#xff0c;人工智能的核心是深度学习 1、深度学习 深度学习需要用到大量的神经网络构建和运算模块&#xff0c;故出现了很多的深度学习框…

Unity 窗口化设置

在Unity中要实现窗口化&#xff0c;具体设置如下&#xff1a; 在编辑器中&#xff0c;选择File -> Build Settings。在Player Settings中&#xff0c;找到Resolution and Presentation部分。取消勾选"Fullscreen Mode"&#xff0c;并选择"Windowed"。设…

数据库的横表和竖表

先来看个图: 定义如下&#xff1a; 横表&#xff1a;在一行数据中包含了所有的属性&#xff0c;一行就代表了一个完整的实体 竖表&#xff1a;在一行中只存储一个实体的一个属性&#xff0c;多个行组合在一起才组成一个完整的属性适用场景&#xff1a; 横表&#xff1a;对查…

(C++笔试题)选择题+编程题

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 选择题 第一道 下面对析构函数的正确描述是&#xff08;&#xff09; A. 系统不能提供默认的析构函数B. 析构函数必须由用户定义C. 析构函数没有参数D. 析构函数可以设置默认参数 解析&#xff1a; 正确描述析构函数的…

WebPack的使用及属性配、打包资源

WebPack(静态模块打包工具)(webpack默认只识别js和json内容) WebPack的作用 把静态模块内容压缩、整合、转译等&#xff08;前端工程化&#xff09; 1️⃣把less/sass转成css代码 2️⃣把ES6降级成ES5 3️⃣支持多种模块文件类型&#xff0c;多种模块标准语法 export、export…

GESP Python编程二级认证真题 2024年3月

Python 二级 2024 年 03 月 1 单选题&#xff08;每题 2 分&#xff0c;共 30 分&#xff09; 第 1 题 小杨的父母最近刚刚给他买了一块华为手表&#xff0c;他说手表上跑的是鸿蒙&#xff0c;这个鸿蒙是&#xff1f;&#xff08; &#xff09; A. 小程序 B. 计时器 C. 操作系统…

Stable Diffusion之核心基础知识和网络结构解析

Stable Diffusion核心基础知识和网络结构解析 一. Stable Diffusion核心基础知识1.1 Stable Diffusion模型工作流程1. 文生图(txt2img)2. 图生图3. 图像优化模块 1.2 Stable Diffusion模型核心基础原理1. 扩散模型的基本原理2. 前向扩散过程详解3. 反向扩散过程详解4. 引入Late…

Java_20 元素和最小的山形三元组

元素和最小的山形三元组 给你一个下标从 0 开始的整数数组 nums 。 如果下标三元组 (i, j, k) 满足下述全部条件&#xff0c;则认为它是一个 山形三元组 &#xff1a; i < j < knums[i] < nums[j] 且 nums[k] < nums[j] 请你找出 nums 中 元素和最小 的山形三元…

【如何解决一些常见的 Composer 错误的保姆级讲解】

&#x1f308;个人主页:程序员不想敲代码啊&#x1f308; &#x1f3c6;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家&#x1f3c6; &#x1f44d;点赞⭐评论⭐收藏 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提…

ABAP AMDP 示例

AMDP 是HANA开发中的一种优化模式 按SAP的官方建议&#xff0c;在可以使用Open SQL实现需要的功能或优化目标的时候&#xff0c;不建议使用AMDP。而在需要使用Open SQL不支持的特性&#xff0c;或者是大量处理流和分析导致了数据库和应用服务器之间有重复的大量数据传输的情况…