【MySQL】13. 索引(重点)

在这里插入图片描述

1. 没有索引,可能会有什么问题

索引:提高数据库的性能,索引是物美价廉的东西了。
不用加内存,不用改程序,不用调sql,只要执行正确的 create index ,查询速度就可能提高成百上千倍。
但是天下没有免费的午餐,查询速度的提高是以插入、更新、删除的速度为代价的,这些写操作,增加了大量的IO。
所以它的价值,在于提高一个海量数据的检索速度。

常见索引分为:

  • 主键索引(primary key)
  • 唯一索引(unique)
  • 普通索引(index)
  • 全文索引(fulltext)–解决中子文索引问题。

案例:
先整一个海量表,在查询的时候,看看没有索引时有什么问题?

代码这里就不贴了,放到gitee网站上了点击链接即可!!!
还是跟之前一样将SQL代码拖到所要存放的目录下,再进行导出命令

mysql> source /var/lib/mysql/index_data.sql  -- 这里的路径找到自己的文件

在这里插入图片描述
这可能需要等待几分钟,因为数据量特别大,数据库IO需要时间
在这里插入图片描述
到此,已经创建出了海量数据的表了。

mysql> use bit_index;
Database changed
mysql> show tables;
+---------------------+
| Tables_in_bit_index |
+---------------------+
| EMP                 |
+---------------------+
1 row in set (0.01 sec)mysql> select * from EMP limit 10;
+--------+--------+----------+------+---------------------+---------+--------+--------+
| empno  | ename  | job      | mgr  | hiredate            | sal     | comm   | deptno |
+--------+--------+----------+------+---------------------+---------+--------+--------+
| 100002 | vIeyeb | SALESMAN | 0001 | 2024-03-26 00:00:00 | 2000.00 | 400.00 |    464 |
| 100003 | wvQSPx | SALESMAN | 0001 | 2024-03-26 00:00:00 | 2000.00 | 400.00 |    451 |
| 100004 | bBCigh | SALESMAN | 0001 | 2024-03-26 00:00:00 | 2000.00 | 400.00 |    206 |
| 100005 | AsmicO | SALESMAN | 0001 | 2024-03-26 00:00:00 | 2000.00 | 400.00 |    372 |
| 100006 | prPXvh | SALESMAN | 0001 | 2024-03-26 00:00:00 | 2000.00 | 400.00 |    276 |
| 100007 | lzQFDa | SALESMAN | 0001 | 2024-03-26 00:00:00 | 2000.00 | 400.00 |    206 |
| 100008 | Vseryo | SALESMAN | 0001 | 2024-03-26 00:00:00 | 2000.00 | 400.00 |     17 |
| 100009 | mgXtaX | SALESMAN | 0001 | 2024-03-26 00:00:00 | 2000.00 | 400.00 |    364 |
| 100010 | KrFcvU | SALESMAN | 0001 | 2024-03-26 00:00:00 | 2000.00 | 400.00 |    116 |
| 100011 | vuLvUm | SALESMAN | 0001 | 2024-03-26 00:00:00 | 2000.00 | 400.00 |    257 |
+--------+--------+----------+------+---------------------+---------+--------+--------+
10 rows in set (0.00 sec)

查询员工编号为998877的员工
在这里插入图片描述
where后面跟常数 表示恒为True 那么就会一直在EMP表当中查找,最终因为操作系统内存不够的原因被Kill掉(kill -9命令)

[root@iZ0jl69kyvg0h181cozuf5Z mysql]# ps axj | grep mysql9940  9961  9961  9940 pts/0     9961 S+       0   0:00 mysql -uroot -p9962 10062 10061  9962 pts/1    10061 S+       0   0:00 grep --color=auto mysql1 14239 14238 14238 ?           -1 Sl      27  16:48 /usr/sbin/mysqld --daemonize --pidfile=/var/run/mysqld/mysqld.pid
[root@iZ0jl69kyvg0h181cozuf5Z mysql]# ps axj | grep mysql9962 10082 10081  9962 pts/1    10081 S+       0   0:00 grep --color=auto mysql1 14239 14238 14238 ?           -1 Sl      27  16:59 /usr/sbin/mysqld --daemonize --pid-file=/var/run/mysqld/mysqld.pid

同时mysql进程也被杀掉了,重新启动mysql

mysql> select * from EMP where empno = 998877;
+--------+--------+----------+------+---------------------+---------+--------+--------+
| empno  | ename  | job      | mgr  | hiredate            | sal     | comm   | deptno |
+--------+--------+----------+------+---------------------+---------+--------+--------+
| 998877 | IdprQa | SALESMAN | 0001 | 2024-03-26 00:00:00 | 2000.00 | 400.00 |    321 |
+--------+--------+----------+------+---------------------+---------+--------+--------+
1 row in set (4.53 sec)

可以看到耗时4.93秒,这还是在本机一个人来操作,在实际项目中,如果放在公网中,假如同时有1000个人并发查询,那很可能就死机。
解决方法,创建索引

mysql> alter table EMP add index(empno);
Query OK, 0 rows affected (18.96 sec)
Records: 0  Duplicates: 0  Warnings: 0

换一个员工编号,测试看看查询时间

mysql> select * from EMP where empno=123456;
+--------+--------+----------+------+---------------------+---------+--------+--------+
| empno  | ename  | job      | mgr  | hiredate            | sal     | comm   | deptno |
+--------+--------+----------+------+---------------------+---------+--------+--------+
| 123456 | JZfAnP | SALESMAN | 0001 | 2024-03-26 00:00:00 | 2000.00 | 400.00 |    104 |
+--------+--------+----------+------+---------------------+---------+--------+--------+
1 row in set (0.01 sec)

我们可以看到增加索引后的速度就是0.01秒,非常快!

2. 认识磁盘

MySQL与存储
MySQL 给用户提供存储服务,而存储的都是数据,数据在磁盘这个外设当中。磁盘是计算机中的一个机械设备,相比于计算机其他电子元件,磁盘效率是比较低的,在加上IO本身的特征,可以知道,如何提交效率,是 MySQL 的一个重要话题。
先来研究一下磁盘:
在这里插入图片描述
再看看磁盘中一个盘片
在这里插入图片描述
扇区
数据库文件,本质其实就是保存在磁盘的盘片当中。也就是上面的一个个小格子中,就是我们经常所说的扇区。当然,数据库文件很大,也很多,一定需要占据多个扇区。

题外话:

  • 从上图可以看出来,在半径方向上,距离圆心越近,扇区越小,距离圆心越远,扇区越大
  • 那么,所有扇区都是默认512字节吗?
    目前是的,我们也这样认为。因为保证一个扇区多大,是由比特位密度决定的。
  • 不过最新的磁盘技术,已经慢慢的让扇区大小不同了,不过我们现在暂时不考虑。

我们在使用Linux,所看到的大部分目录或者文件,其实就是保存在硬盘当中的。
(当然,有一些内存文件系统,如: proc , sys 之类,我们不考虑)

#数据库文件,本质其实就是保存在磁盘的盘片当中,就是一个一个的文件
[root@iZ0jl69kyvg0h181cozuf5Z ~]# ls /var/lib/mysql -l   #我们目前MySQL中的文件
total 254032
-rw-r----- 1 mysql mysql        56 Mar 11 10:37 auto.cnf
drwxr-x--- 2 mysql mysql      4096 Mar 26 16:06 bit_index
-rw------- 1 mysql mysql      1676 Mar 11 10:37 ca-key.pem
-rw-r--r-- 1 mysql mysql      1112 Mar 11 10:37 ca.pem
-rw-r--r-- 1 mysql mysql      1112 Mar 11 10:37 client-cert.pem
-rw------- 1 mysql mysql      1680 Mar 11 10:37 client-key.pem
-rw-r----- 1 mysql mysql       301 Mar 11 11:29 ib_buffer_pool
-rw-r----- 1 mysql mysql 146800640 Mar 26 16:08 ibdata1
-rw-r----- 1 mysql mysql  50331648 Mar 26 16:08 ib_logfile0
-rw-r----- 1 mysql mysql  50331648 Mar 26 16:08 ib_logfile1
-rw-r----- 1 mysql mysql  12582912 Mar 23 12:59 ibtmp1
-rw-r--r-- 1 root  root       1974 Mar 25  2022 index_data.sql
drwxr-x--- 2 mysql mysql      4096 Mar 11 10:37 mysql
srwxrwxrwx 1 mysql mysql         0 Mar 11 11:29 mysql.sock
-rw------- 1 mysql mysql         6 Mar 11 11:29 mysql.sock.lock
drwxr-x--- 2 mysql mysql      4096 Mar 11 10:37 performance_schema
-rw------- 1 mysql mysql      1676 Mar 11 10:37 private_key.pem
-rw-r--r-- 1 mysql mysql       452 Mar 11 10:37 public_key.pem
drwxr-x--- 2 mysql mysql      4096 Mar 26 11:50 scott
-rw-r--r-- 1 mysql mysql      1112 Mar 11 10:37 server-cert.pem
-rw------- 1 mysql mysql      1676 Mar 11 10:37 server-key.pem
drwxr-x--- 2 mysql mysql     12288 Mar 11 10:37 sys
drwxr-x--- 2 mysql mysql      4096 Mar 23 13:07 tt# 自己定义的数据库,里面有数据表

所以,最基本的,找到一个文件的全部,本质,就是在磁盘找到所有保存文件的扇区。
而我们能够定位任何一个扇区,那么便能找到所有扇区,因为查找方式是一样的。

定位扇区
在这里插入图片描述

  • 柱面(磁道): 多盘磁盘,每盘都是双面,大小完全相等。那么同半径的磁道,整体上便构成了一个柱面
  • 每个盘面都有一个磁头,那么磁头和盘面的对应关系便是1对1的
  • 所以,我们只需要知道,磁头(Heads)、柱面(Cylinder)(等价于磁道)、扇区(Sector)对应的编号,即可在磁盘上定位所要访问的扇区。
    这种磁盘数据定位方式叫做 CHS 。不过实际系统软件使用的并不是 CHS (但是硬件是),而是 LBA ,一种线性地址,可以想象成虚拟地址与物理地址。
    系统将 LBA 地址最后会转化成为 CHS ,交给磁盘去进行数据读取。
    不过,我们现在不关心转化细节,知道这个东西,让我们逻辑自洽起来即可。
    结论
    我们现在已经能够在硬件层面定位,任何一个基本数据块了(扇区)。那么在系统软件上,就直接按照扇区(512字节,部分4096字节),进行IO交互吗?不是
  • 如果操作系统直接使用硬件提供的数据大小进行交互,那么系统的IO代码,就和硬件强相关,换言之,如果硬件发生变化,系统必须跟着变化
  • 从目前来看,单次IO 512字节,还是太小了。IO单位小,意味着读取同样的数据内容,需要进行多次磁盘访问,会带来效率的降低。
  • 之前学习文件系统,就是在磁盘的基本结构下建立的。文件系统读取基本单位,就不是扇区,而是数据块。

故,系统读取磁盘,是以块为单位的,基本单位是 4KB 。

磁盘随机访问(Random Access)与连续访问(Sequential Access)
随机访问:本次IO所给出的扇区地址和上次IO给出扇区地址不连续,这样的话磁头在两次IO操作之间需要作比较大的移动动作才能重新开始读/写数据。
连续访问:如果当次IO给出的扇区地址与上次IO结束的扇区地址是连续的,那磁头就能很快的开始这次IO操作,这样的多个IO操作称为连续访问。
因此尽管相邻的两次IO操作在同一时刻发出,但如果它们的请求的扇区地址相差很大的话也只能称为随机访问,而非连续访问。
磁盘是通过机械运动进行寻址的,随机访问不需要过多的定位,故效率比较高。

3. MySQL 与磁盘交互基本单位

而 MySQL 作为一款应用软件,可以想象成一种特殊的文件系统。它有着更高的IO场景,所以,为了提高
基本的IO效率, MySQL 进行IO的基本单位是 16KB (后面统一使用 InnoDB 存储引擎讲解)

mysql> SHOW GLOBAL STATUS LIKE 'innodb_page_size';
+------------------+-------+
| Variable_name    | Value |
+------------------+-------+
| Innodb_page_size | 16384 | -- 16*1024=16384
+------------------+-------+
1 row in set (0.01 sec)

也就是说,磁盘这个硬件设备的基本单位是 512 字节,而 MySQL InnoDB引擎 使用 16KB 进行IO交互。
即, MySQL 和磁盘进行数据交互的基本单位是 16KB 。这个基本数据单元,在 MySQL 这里叫做page(注意和系统的page区分)

4. 建立共识

在这里插入图片描述

  • MySQL 中的数据文件,是以page为单位保存在磁盘当中的。
  • MySQL 的 CURD 操作,都需要通过计算,找到对应的插入位置,或者找到对应要修改或者查询的数 据。
  • 而只要涉及计算,就需要CPU参与,而为了便于CPU参与,一定要能够先将数据移动到内存当中。
  • 所以在特定时间内,数据一定是磁盘中有,内存中也有。后续操作完内存数据之后,以特定的刷新策略,刷新到磁盘。而这时,就涉及到磁盘和内存的数据交互,也就是IO了。而此时IO的基本单位就是Page
  • 为了更好的进行上面的操作, MySQL 服务器在内存中运行的时候,在服务器内部,就申请了被称为 Buffer Pool 的的大内存空间,来进行各种缓存。其实就是很大的内存空间,来和磁盘数据进行IO交互。
  • 为何更高的效率,一定要尽可能的减少系统和磁盘IO的次数

5. 索引的理解

建立测试表

create table if not exists user (
id int primary key, --一定要添加主键哦,只有这样才会默认生成主键索引
age int not null,
name varchar(16) not null
);
mysql> show create table user \G
*************************** 1. row ***************************
Table: user
Create Table: CREATE TABLE `user` (
`id` int(11) NOT NULL,
`age` int(11) NOT NULL,
`name` varchar(16) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 --默认就是InnoDB存储引擎
1 row in set (0.00 sec)

插入多条记录

--插入多条记录,注意,我们并没有按照主键的大小顺序插入哦
mysql> insert into user (id, age, name) values(3, 18, '杨过');
Query OK, 1 row affected (0.01 sec)
mysql> insert into user (id, age, name) values(4, 16, '小龙女');
Query OK, 1 row affected (0.00 sec)
mysql> insert into user (id, age, name) values(2, 26, '黄蓉');
Query OK, 1 row affected (0.01 sec)
mysql> insert into user (id, age, name) values(5, 36, '郭靖');
Query OK, 1 row affected (0.00 sec)
mysql> insert into user (id, age, name) values(1, 56, '欧阳锋');
Query OK, 1 row affected (0.00 sec)

查看插入结果

mysql> select * from user; --发现竟然默认是有序的!是谁干的呢?排序有什么好处呢?
+----+-----+-----------+
| id | age | name |
+----+-----+-----------+
| 1 | 56 | 欧阳锋 |
| 2 | 26 | 黄蓉 |
| 3 | 18 | 杨过 |
| 4 | 16 | 小龙女 |
| 5 | 36 | 郭靖 |
+----+-----+-----------+
5 rows in set (0.00 sec)

中断一下—为何IO交互要是 Page

为何MySQL和磁盘进行IO交互的时候,要采用Page的方案进行交互呢?用多少,加载多少不香吗?
如上面的5条记录,如果MySQL要查找id=2的记录,第一次加载id=1,第二次加载id=2,一次一条记录,那么就需要2次IO。如果要找id=5,那么就需要5次IO。
但,如果这5条(或者更多)都被保存在一个Page中(16KB,能保存很多记录),那么第一次IO查找id=2的时候,整个Page会被加载到MySQL的Buffer Pool中,这里完成了一次IO。但是往后如果在查找id=1,3,4,5等,完全不需要进行IO了,而是直接在内存中进行了。所以,就在单Page里面,大大减少了IO的次数。
你怎么保证,用户一定下次找的数据,就在这个Page里面?我们不能严格保证,但是有很大概率,因为有局部性原理当我们访问该Page时,那么就有很大的概率访问周围的Page
往往IO效率低下的最主要矛盾不是IO单次数据量的大小,而是IO的次数。

理解单个Page
MySQL 中要管理很多数据表文件,而要管理好这些文件,就需要先描述,再组织
我们目前可以简单理解成一个个独立文件是有一个或者多个Page构成的。
在这里插入图片描述
不同的 Page ,在 MySQL 中,都是 16KB ,使用 prev 和 next 构成双向链表

因为有主键的问题, MySQL 会默认按照主键给我们的数据进行排序,从上面的Page内数据记录可以看出,数据是有序且彼此关联的。

为什么数据库在插入数据时要对其进行排序呢?我们按正常顺序插入数据不是也挺好的吗?
插入数据时排序的目的,就是优化查询的效率。
页内部存放数据的模块,实质上也是一个链表的结构,链表的特点也就是增删快,查询修改慢,所以优化查询的效率是必须的。
正式因为有序,在查找的时候,从头到后都是有效查找,没有任何一个查找是浪费的,而且,如果运气好,是可以提前结束查找过程的。

理解多个Page

通过上面的分析,我们知道,上面页模式中,只有一个功能,就是在查询某条数据的时候直接将一整页的数据加载到内存中,以减少硬盘IO次数,从而提高性能。但是,我们也可以看到,现在的页模式内部,实际上是采用了链表的结构,前一条数据指向后一条数据,本质上还是通过数据的逐条比较来取出特定的数据。

如果有1千万条数据,一定需要多个Page来保存1千万条数据,多个Page彼此使用双链表链接起来,而且每个Page内部的数据也是基于链表的。
那么,查找特定一条记录,也一定是线性查找。这效率也太低了。

在这里插入图片描述
在这里插入图片描述
页目录
我们在看《谭浩强C程序设计》这本书的时候,如果我们要看<指针章节>,找到该章节有两种做法:

  • 方案1:从头逐页的向后翻,直到找到目标内容
  • 方案2:通过书提供的目录,发现指针章节在234页(假设),那么我们便直接翻到234页。同时,查找目录的方案,可以顺序找,不过因为目录肯定少,所以可以快速提高定位

本质上,书中的目录,是多花了纸张的,但是却提高了效率
所以,目录,是一种“空间换时间的做法”

单页情况
针对上面的单页Page,我们能否也引入目录呢?当然可以
在这里插入图片描述
那么当前,在一个Page内部,我们引入了目录。比如,我们要查找id=4记录,之前必须线性遍历4次,才能拿到结果。现在直接通过目录2[3],直接进行定位新的起始位置,提高了效率。现在我们可以再次正式回答上面的问题了,为何通过键值 MySQL 会自动排序?

可以很方便引入目录

多页情况
MySQL 中每一页的大小只有 16KB ,单个Page大小固定,所以随着数据量不断增大,16KB 不可能存下所有的数据,那么必定会有多个页来存储数据。
在这里插入图片描述
在单表数据不断被插入的情况下, MySQL 会在容量不足的时候,自动开辟新的Page来保存新的数据,然后通过指针的方式,将所有的Page组织起来。
需要注意,上面的图,是理想结构,大家也知道,目前要保证整体有序,那么新插入的数据,不一定会在新Page上面,这里仅仅做演示。
这样,我们就可以通过多个Page遍历,Page内部通过目录来快速定位数据。可是,貌似这样也有效率问题,在Page之间,也是需要 MySQL 遍历的,遍历意味着依旧需要进行大量的IO,将下一个Page加载到内存,进行线性检测。这样就显得我们之前的Page内部的目录,有点杯水车薪了。
那么如何解决呢?解决方案,其实就是我们之前的思路,给Page也带上目录。

  • 使用一个目录项来指向某一页,而这个目录项存放的就是将要指向的页中存放的最小数据的键值。
  • 和页内目录不同的地方在于,这种目录管理的级别是页,而页内目录管理的级别是行。
  • 其中,每个目录项的构成是:键值+指针。图中没有画全。
    在这里插入图片描述
    在这里插入图片描述
    存在一个目录页来管理页目录,目录页中的数据存放的就是指向的那一页中最小的数据。有数据,就可通过比较,找到该访问那个Page,进而通过指针,找到下一个Page。
    其实目录页的本质也是页,普通页中存的数据是用户数据,而目录页中存的数据是普通页的地址
    可是,我们每次检索数据的时候,该从哪里开始呢?虽然顶层的目录页少了,但是还要遍历啊?不用担心,可以在加目录页
    在这里插入图片描述
    这货就是传说中的B+树啊!没错,至此,我们已经给我们的表user构建完了主键索引。
    随便找一个id=?我们发现,现在查找的Page数一定减少了,也就意味着IO次数减少了,那么效率也就提高了。

复盘一下

  • Page分为目录页和数据页。目录页只放各个下级Page的最小键值。
  • 查找的时候,自定向下找,只需要加载部分目录页到内存,即可完成算法的整个查找过程,大大减少了IO次数

InnoDB 在建立索引结构来管理数据的时候,其他数据结构为何不行?

  • 链表?线性遍历
  • 二叉搜索树?退化问题,可能退化成为线性结构
  • AVL &&红黑树?虽然是平衡或者近似平衡,但是毕竟是二叉结构,相比较多阶B+,意味着树整体过高。
    大家都是自顶向下找,层高越低,意味着系统与硬盘更少的IO Page交互。虽然你很秀,但 是有更秀的。
  • Hash?官方的索引实现方式中, MySQL 是支持HASH的,不过 InnoDB 和 MyISAM 并不支持;
    Hash跟进其算法特征,决定了虽然有时候也很快(O(1)),不过,在面对范围查找就明显不行,另外还有其他差别,有兴趣可以查一下。

在这里插入图片描述

  • B树?最值得比较的是 InnoDB 为何不用B树作为底层索引?

数据结构演示链接:(点击即可跳转)
在这里插入图片描述
可以自己下去试试看,蛮好玩滴!
B+ vs B
B树
在这里插入图片描述
B+ 树
在这里插入图片描述
目前这两棵树,对我们最有意义的区别是:

  • B树节点,既有数据,又有Page指针,而B+,只有叶子节点有数据,其他目录页,只有键值和Page指针
  • B+叶子节点,全部相连,而B没有

为何选择B+

  • 节点不存储data,这样一个节点就可以存储更多的key。可以使得树更矮,所以IO操作次数更少。
  • 叶子节点相连,更便于进行范围查找

聚簇索引 VS 非聚簇索引
MyISAM 存储引擎-主键索引
MyISAM 引擎同样使用B+树作为索引结果,叶节点的data域存放的是数据记录的地址。
下图为 MyISAM表的主索引, Col1 为主键。
在这里插入图片描述
其中, MyISAM 最大的特点是,将索引Page和数据Page分离,也就是叶子节点没有数据,只有对应数据的地址。
相较于 InnoDB 索引, InnoDB是将索引和数据放在一起的。

--终端A
mysql> create database myisam_test; --创建数据库
Query OK, 1 row affected (0.00 sec)mysql> use myisam_test;
Database changed
mysql> create table mtest(-> id int primary key,-> name varchar(11) not null-> )engine=MyISAM; --使用engine=MyISAM
Query OK, 0 rows affected (0.01 sec)
--终端B
[root@VM-0-3-centos mysql]# ls myisam_test/ -al --mysql数据目录下
total 28
drwxr-x--- 2 mysql mysql 4096 Jun 13 13:33 .
drwxr-x--x 13 mysql mysql 4096 Jun 13 13:32 ..
-rw-r----- 1 mysql mysql 61 Jun 13 13:32 db.opt
-rw-r----- 1 mysql mysql 8586 Jun 13 13:33 mtest.frm --表结构数据
-rw-r----- 1 mysql mysql 0 Jun 13 13:33 mtest.MYD --该表对应的数据,当前没有数据,所以是0
-rw-r----- 1 mysql mysql 1024 Jun 13 13:33 mtest.MYI --该表对应的主键索引数据

其中, MyISAM 这种用户数据与索引数据分离的索引方案,叫做非聚簇索引

--终端A
mysql> create database innodb_test; --创建数据库
Query OK, 1 row affected (0.00 sec)mysql> use innodb_test;
Database changed
mysql> create table itest(-> id int primary key,-> name varchar(11) not null-> )engine=InnoDB; 		--使用engine=InnoDB
Query OK, 0 rows affected (0.02 sec)--终端B
[root@VM-0-3-centos mysql]# ls innodb_test/ -al
total 120
drwxr-x---  2 mysql mysql  4096 Jun 13 13:39 .
drwxr-x--x 14 mysql mysql  4096 Jun 13 13:38 ..
-rw-r-----  1 mysql mysql    61 Jun 13 13:38 db.opt
-rw-r-----  1 mysql mysql  8586 Jun 13 13:39 itest.frm --表结构数据
-rw-r-----  1 mysql mysql 98304 Jun 13 13:39 itest.ibd --该表对应的主键索引和用户数据,虽然现在一行数据没有,但是该表并不为0,因为有主键索引数据

其中, InnoDB 这种用户数据与索引数据在一起索引方案,叫做聚簇索引
当然, MySQL 除了默认会建立主键索引外,我们用户也有可能建立按照其他列信息建立的索引,一般这
种索引可以叫做辅助(普通)索引。
对于 MyISAM ,建立辅助(普通)索引和主键索引没有差别,无非就是主键不能重复,而非主键可重复。
下图就是基于 MyISAM 的 Col2 建立的索引,和主键索引没有差别
在这里插入图片描述
同样, InnoDB 除了主键索引,用户也会建立辅助(普通)索引,我们以上表中的 Col3 建立对应的辅助索引如下图:
在这里插入图片描述
可以看到, InnoDB 的非主键索引中叶子节点并没有数据,而只有对应记录的key值。
所以通过辅助(普通)索引,找到目标记录,需要两遍索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录。这种过程,就叫做回表查询
为何 InnoDB 针对这种辅助(普通)索引的场景,不给叶子节点也附上数据呢?原因就是太浪费空间了。

总结:

  • 如何理解硬盘
  • 如何理解柱面,磁道,扇区,磁头
  • InnoDB 主键索引和普通索引
  • MyISAM 主键索引和普通索引
  • 其他数据结构为何不能作为索引结构,尤其是B+和B
  • 聚簇索引 VS 非聚簇索引

6. 索引操作

创建主键索引

  • 第一种方式
-- 在创建表的时候,直接在字段名后指定 primary key
create table user1(id int primary key, name varchar(30));
  • 第二种方式:
-- 在创建表的最后,指定某列或某几列为主键索引
create table user2(id int, name varchar(30), primary key(id));
  • 第三种方式:
create table user3(id int, name varchar(30));
-- 创建表以后再添加主键
alter table user3 add primary key(id);

主键索引的特点:

  • 一个表中,最多有一个主键索引,当然可以使符合主键
  • 主键索引的效率高(主键不可重复)
  • 创建主键索引的列,它的值不能为null,且不能重复
  • 主键索引的列基本上是int

唯一索引的创建

  • 第一种方式
-- 在表定义时,在某列后直接指定unique唯一属性。
create table user4(id int primary key, name varchar(30) unique);
  • 第二种方式
-- 创建表时,在表的后面指定某列或某几列为unique
create table user5(id int primary key, name varchar(30), unique(name));
  • 第三种方式
create table user6(id int primary key, name varchar(30));
alter table user6 add unique(name);

唯一索引的特点:

  • 一个表中,可以有多个唯一索引
  • 查询效率高
  • 如果在某一列建立唯一索引,必须保证这列不能有重复数据
  • 如果一个唯一索引上指定not null,等价于主键索引

普通索引的创建

  • 第一种方式
create table user8(id int primary key,
name varchar(20),
email varchar(30),
index(name) --在表的定义最后,指定某列为索引
);
  • 第二种方式
create table user9(id int primary key, name varchar(20), email
varchar(30));
alter table user9 add index(name); --创建完表以后指定某列为普通索引
  • 第三种方式
create table user10(id int primary key, name varchar(20), email
varchar(30));
-- 创建一个索引名为 idx_name 的索引
create index idx_name on user10(name);

普通索引的特点:

  • 一个表中可以有多个普通索引,普通索引在实际开发中用的比较多
  • 如果某列需要创建索引,但是该列有重复的值,那么我们就应该使用普通索引

查询索引

  • 第一种方法: show keys from 表名
mysql> show keys from goods\G
*********** 1. row ***********
Table: goods <= 表名
Non_unique: 0 <= 0表示唯一索引
Key_name: PRIMARY <= 主键索引
Seq_in_index: 1
Column_name: goods_id <= 索引在哪列
Collation: A
Cardinality: 0
Sub_part: NULL
Packed: NULL
Null:
Index_type: BTREE <= 以二叉树形式的索引
Comment:
1 row in set (0.00 sec)
  • 第二种方法: show index from 表名;
  • 第三种方法(信息比较简略): desc 表名;

删除索引

  • 第一种方法-删除主键索引:
alter table 表名 drop primary key;
  • 第二种方法-其他索引的删除:
alter table 表名 drop index 索引名; 索引名就是show keys from 表名中的 Key_name 字段
mysql> alter table user10 drop index idx_name;
  • 第三种方法方法:
drop index 索引名 on 表名
mysql> drop index name on user8;

索引创建原则

  • 比较频繁作为查询条件的字段应该创建索引
  • 唯一性太差的字段不适合单独创建索引,即使频繁作为查询条件
  • 更新非常频繁的字段不适合作创建索引
  • 不会出现在where子句中的字段不该创建索引

其他概念–自行了解:

  • 复合索引 – 可以理解为将多个键作为一个索引 应用场景比较少见
    (通过姓名取QQ号 ,将姓名和QQ号作为索引,取到姓名就可以直接取到QQ号)
  • 索引最左匹配原则
    (复合索引存在的问题:假如姓名和QQ号作为索引,那么只能通过姓名匹配,无法匹配QQ)
  • 索引覆盖
    (复合索引会覆盖主键的值,因为通过姓名找QQ号的方式,不需要再回表通过找到主键的方式再去找QQ号)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/775789.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SD卡备份和烧录ubuntu20.04镜像

设备及系统&#xff1a;nuc幻影峡谷工控机&#xff0c;ubuntu20.04&#xff0c;树莓派4B&#xff0c;SD卡读卡器 一、确定SD卡设备号的两种方法 方法1&#xff1a; 将有ubuntu镜像的SD卡插入读卡器&#xff0c;再将读卡器插入电脑主机&#xff0c;在 工具 中打开 磁盘&#…

k8s入门到实战(十二)—— pod的深入理解

pod 深入理解 pod 容器生命周期 pod 的几种状态 可以使用命令kubectl get pod -w实时监控查看 pod 的状态 running&#xff1a;正常运行状态Pending&#xff1a;资源分配不对的时候会挂起&#xff0c;出现此状态Terminating&#xff1a;某个节点突然关机&#xff0c;上面的 p…

[DS]Polar靶场web(一)

静以养心&#xff0c;宽以养气。 跟着Dream ZHO大神学专升安的一天 swp 直接dirb扫出.index.php.swp的目录 function jiuzhe($xdmtql){return preg_match(/sys.*nb/is,$xdmtql);//如果包含以 "sys" 开始&#xff0c;后跟任意字符直到 "nb" 的字符串&…

JavaScript中的继承方式详解

Question JavaScript实现继承的方式&#xff1f; 包含原型链继承、构造函数继承、组合继承、原型式继承、寄生式继承、寄生组合式继承和ES6 类继承 JavaScript实现继承的方式 在JavaScript中&#xff0c;实现继承的方式多种多样&#xff0c;每种方式都有其优势和适用场景。以下…

macOS Sonoma 14.4.1 (23E224) 正式版 Boot ISO 原版可引导镜像下载

macOS Sonoma 14.4.1 (23E224) 正式版 Boot ISO 原版可引导镜像下载 2024 年 3 月 26 日凌晨&#xff0c;macOS Sonoma 14.4.1 更新修复了一个可能导致连接到外部显示器的 USB 集线器无法被识别的问题。它还解决了可能导致 Java 应用程序意外退出的问题&#xff0c;并修复了可…

Spring 事务传播行为

实现原理 : Aop (TransactionInterceptor) 实现 使用spring声明式事务注意事项 同一个bean中的方法调用必须重新声明一个bean调用、否则后续方法调用的事务默认使用第一个第二个不生效 package com.cloud.person.service.impl;import com.cloud.person.dao.S1Mapper; import…

STM32常用的开发工具有哪些

大家好&#xff0c;今天给大家介绍STM32常用的开发工具有哪些&#xff0c;文章末尾附有分享大家一个资料包&#xff0c;差不多150多G。里面学习内容、面经、项目都比较新也比较全&#xff01;可进群免费领取。 STM32常用的开发工具主要包括以下几类&#xff1a; 集成开发环境&…

java数据结构与算法刷题-----LeetCode744. 寻找比目标字母大的最小字母

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 文章目录 二分查找 二分查找 解题思路&#xff1a;时间复杂度O( l o g 2 …

说说webpack proxy工作原理?为什么能解决跨域?

文章目录 一、是什么二、工作原理三、跨域参考文献 一、是什么 webpack proxy&#xff0c;即webpack提供的代理服务 基本行为就是接收客户端发送的请求后转发给其他服务器 其目的是为了便于开发者在开发模式下解决跨域问题&#xff08;浏览器安全策略限制&#xff09; 想要…

电路仿真软件大比拼:哪款更适合你?

以下是关于市面上常见的四款电路仿真软件的整体介绍&#xff1a; 1. Multisim&#xff08;美国&#xff0c;美国国家仪器&#xff08;NI&#xff09;有限公司&#xff09; 特点与优势&#xff1a; 直观的图形界面&#xff1a;提供用户友好的界面&#xff0c;便于快速搭建和修…

Openstack创建和操作实例,实现与外部网络通信

一、熟悉OpenStack图形界面操作 1、了解Horizon项目 Horizon项目 各OpenStack服务的图形界面都是由Horizon提供的。Horizon提供基于Web的模块化用户界面。Horizon为云管理员提供一个整体的视图。Horizon为终端用户提供一个自主服务的门户。Horizon由云管理员进行管理与控制&a…

语音陪玩交友软件系统程序-app小程序H5三端源码交付,支持二开!

电竞行业的发展带动其周边产业的发展&#xff0c;绘制着游戏人物图画的抱枕、鼠标垫、海报销量极大&#xff0c;电竞游戏直播、游戏教程短视频也备受人们喜爱&#xff0c;自然&#xff0c;像游戏陪练、代练行业也随之生长起来&#xff0c;本文就来讲讲&#xff0c;从软件开发角…

【字节二面】SpringBoot可以同时处理多少请求

目录 一、示例代码二、那么springboot可以处理多少请求&#xff1f;三、maxConnections、maxThreads、acceptCount的关系 一、示例代码 RestController Slf4j public class RequestController {GetMapping("/test")public String test(HttpServletRequest request) …

腾讯放大招了!AniPortrait开源上线!音频驱动逼真人像动画合成!人人都是歌手!

文章链接&#xff1a;https://arxiv.org/pdf/2403.17694 github链接&#xff1a;https://github.com/Zejun-Yang/AniPortrait 本文提出了AniPortrait&#xff0c;一个新颖的框架&#xff0c;用于生成由音频和参考肖像驱动的高质量动画。方法分为两个阶段。首先&#xff0c;从音…

linux i2c-tools使用总结

1,安装iic-tools sudo apt install i2c-tools -y 2,查看有几条iic总线 [root@sino-platform:/root]# ls /dev/i2c- i2c-0 i2c-1 i2c-2 i2c-3 3,查看i2c命令 [root@sino-platform:/root]# i2c i2cdetect i2cdump i2cget i2cset 4,iic-help命令 [root@sino-platform…

【vue3学习笔记(二)】(第141-143节)初识setup;ref函数_处理基本类型;ref函数_处理对象类型

尚硅谷Vue2.0Vue3.0全套教程丨vuejs从入门到精通 本篇内容对应课程第141-143节 课程 P141节 《初识setup》笔记 1、setup是所有组合式API“表演的舞台”&#xff0c;组件中所用到的所有数据、方法、监视数据、生命周期钩子等都需要配置在setup中。 2、setup的两种返回值&…

Go语言介绍以及如何在Go语言中操作MySQL数据库

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…

「Nginx」Nginx配置详解

「Nginx」Nginx配置详解 参考文章1、正向代理和方向代理2、指定域名允许跨域 参考文章 1、Nginx反向代理 2、nginx配置详解 3、Nginx服务器之负载均衡策略&#xff08;6种&#xff09; 1、正向代理和方向代理 2、指定域名允许跨域 map $http_origin $allow_cors {default 1;…

uniApp使用XR-Frame创建3D场景(6)播放模型动画

上篇文章讲述了如何将XR-Frame作为子组件集成到uniApp中使用 这篇我们讲解播放模型动画 先看源码 <xr-scene render-system"alpha:true" bind:ready"handleReady"> <xr-node visible"{{sec6}}"><xr-light type"ambient&qu…

【Qt学习】了解Qt文件系统 + 利用QFile类实现记事本功能

文章目录 1. 前言 - 关于Qt文件1.1 QIODevice 介绍1.2 QFile 介绍1.2 打开文件的方式 2. 实例 - 记事本功能2.1 功能实现2.2 getOpenFileName() 与 getSaveFileName() 的区别2.3 效果演示 3. 资源文件 1. 前言 - 关于Qt文件 文件操作 是应⽤程序必不可少的部分&#xff0c;Qt作…