机器人寻路算法双向A*(Bidirectional A*)算法的实现C++、Python、Matlab语言

机器人寻路算法双向A*(Bidirectional A*)算法的实现C++、Python、Matlab语言

最近好久没更新,在搞华为的软件挑战赛(软挑),好卷只能说。去年还能混进32强,今年就比较迷糊了,这东西对我来说主要还是看运气,毕竟没有实力哈哈哈。

但是,好歹自己吭哧吭哧搞了两周,也和大家分享一下自己的收获吧,希望能为后来有需要的同学提供一些帮助。

我其实不太了解寻路算法的,很多代码也是找的demo自己改的,非常感谢这些大佬的帮助,有些引用可能现在也找不太到了,列不出来,非常感谢万能网友的代码,在此一起感谢啦!部分参考如下:
A*算法路径规划之Matlab实现
A算法路径规划博文附件1.zip
基于matlab的双向A*算法
【路径规划】A*算法方法改进思路简析
等等等

代码和运行资源下载:机器人寻路算法双向A*(Bidirectional A*)算法的实现C++、Python、Matlab语言

目录

  • 机器人寻路算法双向A*(Bidirectional A*)算法的实现C++、Python、Matlab语言
    • 1、基于Matlab的双向A*寻路算法
      • 1.1、基本地图
      • 1.2、非联通区域的地图处理
      • 1.3、双向A*寻路算法Matlab实现
      • 1.4、双向A*寻路算法的加速小TIPS
      • 1.5、现存的问题
    • 2、双向A*寻路算法的C++实现
      • 2.1、在C++得到类似结果
      • 2.2、得到最大联通区域地图
      • 2.3、有限时间的寻路计算
      • 2.4、使用历史路网结构
      • 2.5、中转站机制
      • 2.6、一坨稀烂的机器人防碰撞
      • 2.7、提前规划路径
      • 2.8、运行前修改main.h的日志导出路径,不然报错
    • 3、双向A*寻路算法的python实现

1、基于Matlab的双向A*寻路算法

C++的代码也是用Matlab导出的,因此实现的功能是相近的。

1.1、基本地图

这是我主要改的地方,C++的代码也是用这个Matlab导出去的。首先就是读入地图数据,华为任务书里面写了对应的格式。给出的地图原始格式为txt,有200行200列,代表200*200的地图(第一行代表横坐标为0,纵坐标为0-199,以此类推),海洋和障碍是不能走的地方,泊位、空地都是能够行走的。
在这里插入图片描述
在实际的地图中,我们只考虑实际的空地和障碍,实际的空地包括泊位、空地,实际的障碍包括海洋和障碍,得到的地图如下所示:
在这里插入图片描述
地图的读取主要使用了下面的核心代码:

%% 双向A星24域
% 读入的sign就是对应的格子图
[sign] = readHWmap('map1.txt');
% 定义地图的宽
row=200;
col=200;
% 寻路的起点和终点坐标
start_xy=[44 19];
end_xy=[50 80];

1.2、非联通区域的地图处理

值得注意的是,上面地图中有些空地是被障碍物包围的,因此无法到达。因此我对初始地图进行了处理,获得最大的联通区域(使用搜索算法)。这一步可以在地图初始化的时候进行:

% 得到和坐标【66,66】相连的大联通区域,避免不可达到的空地影响
[sign,area]=getAllOb(sign,66,66);

处理后得到的地图如下所示,可以看到不可抵达的空地全部使用障碍来填充了:
在这里插入图片描述

1.3、双向A*寻路算法Matlab实现

A*算法是一种传统的路径规划算法,相较于Dijkstra算法,其引入了启发式算子,有效的提高了路径的搜索效率。主要步骤包括:
1)设置起始点、目标点以及带障碍物的栅格地图
2)选择当前节点的可行后继节点加入到openlist中
3)从openlist中选择成本最低的节点加入closelist节点
4)重复执行步骤2和步骤3,直到当前节点到达目标点,否则地图中不存在可行路径
5)从closelist中选择从起点到终点的路径,并画图展示

传统A* 算法从起点开始搜索,而双向A*从起点和终点同时开始搜索,所以运算速度会大大加快。以华为的地图为例,按照下面设置起点和终点:

% 寻路的起点和终点坐标
start_xy=[44 19];
end_xy=[50 80];

最终得到的结果如下所示:
在这里插入图片描述

1.4、双向A*寻路算法的加速小TIPS

1、扩展邻域法

扩展邻域法的思想是通过提高单次邻域的搜索范围,从而减少整个过程中的搜索次数,从而降低计算量。此处实现使用的是24邻域。

但是24邻域和此处网格机器人不太一样,网格机器人只能上下左右移动,所以从物理上看只能有四邻域。使用24邻域能够加快搜索速度,但是在实际控制时需要额外的判断。

因此,我在实际实现时是使用双向Astar算法得到关键的路径节点,但是机器人的实际行动是用Astar算法控制的。因为双向Astar算法得到的节点之间的距离都非常近,在此基础上使用A*算法进行二次寻路和避障速度比较快(把其他机器人当成障碍物来避障)


2、有限区域初始化搜索
我们知道地图时非常大的,每次进行Astar算法的搜索都要进行很多的数组的初始化。按照此处的地图大小,是200*200的,一共有40000个数据。

所以在实际搜索时,我先依据起点和终点的位置,并留出一定的余量,从大地图中剥离出一个小地图,在这个小地图中进行搜索,这样速度会提升20-50%左右吧,起点和终点横跨的区域越小,这样做的优势就越明显。

实际实现留出的余量是这个参数:

% 在有些区域内使用算法加快速度,起点终点所含区域向外衍生20格,改为200则使用全局寻路
area_shift=20;

1.5、现存的问题

1、距离为1时进行搜索会抖动
但是我实际使用时发现在特别短的距离下寻路效果不好,会出现抖动的情况(不知道是不是代码问题),虽然长距离运算速度确实不错,例如我起点和终点的距离只差一格:

%% 双向A星24域
% 读入的sign就是对应的格子图
[sign] = readHWmap('map1.txt');
% 定义地图的宽
row=200;
col=200;
% 寻路的起点和终点坐标
start_xy=[44 19];
end_xy=[44 18];

得到的结果抖的不行,这是因为寻路是双向进行的,因此得到的最短的路径长度也是2,非常难受(但是只差1格感觉可以不用寻路了哈哈哈):
在这里插入图片描述


2、奇奇怪怪的点无法搜索得出路径
如果起点和终点弯弯绕绕,那么寻路算法最终会失败。这和路径的长短没有关系,而是看之间寻路的角度,这个现象非常奇怪,照理说Astar算法是100%可以寻到路径的,但是某项情况就是不行。我也试了一些其他的代码,都会寻路失败,C++代码里面也是这样,例如这样的:

% 寻路的起点和终点坐标
start_xy=[44 19];
end_xy=[36 63];

在这里插入图片描述

2、双向A*寻路算法的C++实现

此处我是使用Matlab的Coder Generater产生的C++代码,功能是一致的,简单介绍一下调试的流程和小小的优化。

2.1、在C++得到类似结果

正常来说,调用地图数据是软挑配套的脚本提供的,但是为了调试需要,我直接把地图1的数据存入C文件,这样可以直接debug调用了。

debug时,没有输入和输出内容,因此需要在和官方判题器交互之前打上断点,debug的内容在sys_fun.cpp中实现

简单的测试代码如下,寻路结果保存在pointsToVisit[0]中

    std::vector<std::vector<int>> mapdata_matrix_tmp(SIZE_MAP, std::vector<int>(SIZE_MAP, 0));signed char mapdata_vector_tmp[SIZE_MAP*SIZE_MAP];findRouteOKFlag=FLAG_END;// 得到最大联通区域getAllOb(map1_test, 66, 66, mapFindRouteAStat, obstaclesCoords);// mapFindRouteAStat转化为二维地图数组int index111 = 0;for (int i = 0; i < SIZE_MAP; ++i) {for (int j = 0; j < SIZE_MAP; ++j) {Map1_2D_Bit[j][i] = mapFindRouteAStat[index111];Map1_2D_Char[j][i] = mapFindRouteAStat[index111];index111++;}}// 得到地图所有障碍的索引find_nonzero_indices(mapFindRouteAStat, map_Ind1, map_Ind2);// 历史路网数据复位initRouteMemory();//下面一行打开则使用历史的路网结构// loadRouteMemory();//定义起点和终点,寻路结果保存在pointsToVisit[0]int start_xy_int[] = {44,19};int end_xy_int[] = {50,80};RobotTowardResource destination;destination.x = end_xy_int[0];destination.y = end_xy_int[1];robotDestinations[0].push_back(destination);getRoutePath(start_xy_int, end_xy_int,0);if(!myFindRouteTask.empty()){float start_xy[2]={myFindRouteTask[0][0],myFindRouteTask[0][1]};float end_xy[2]={myFindRouteTask[0][2],myFindRouteTask[0][3]};//初始化任务findroute_limit_Init(start_xy,end_xy, 20,  SIZE_MAP,  SIZE_MAP,myFindRouteTask[0][4]);myFindRouteTask.erase(myFindRouteTask.begin());}while(findRouteOKFlag==FLAG_RUNNING){findroute_limit(mapFindRouteAStat, map_Ind1,map_Ind2, route_debug, &dis);}

可以看到得到的结果和Matlab中的一致。
在这里插入图片描述

2.2、得到最大联通区域地图

值得注意的是,上面地图中有些空地是被障碍物包围的,因此无法到达。因此我对初始地图进行了处理,获得最大的联通区域。在C++中,这个实现对应下面的语句:

getAllOb(map1_test, 66, 66, mapFindRouteAStat, obstaclesCoords);

其中map1_test是我预存的地图数据,是1 * 40000的数组,相当于把200 * 200的地图数据展平了,数据中只包含0,1。0表示可以通过,1表示为障碍。mapFindRouteAStat是处理后的1*40000的地图,和map1_test的区别就是不可到达的空地也被视为了障碍。
为了方便使用二维索引,把这个数据转化为了二维数组:

    // mapFindRouteAStat转化为二维地图数组int index111 = 0;for (int i = 0; i < SIZE_MAP; ++i) {for (int j = 0; j < SIZE_MAP; ++j) {Map1_2D_Bit[j][i] = mapFindRouteAStat[index111];Map1_2D_Char[j][i] = mapFindRouteAStat[index111];index111++;}}

下面的索引计算相当于对地图障碍位置预先存入数组了,之后直接调用就行,方便加速计算:

// 得到地图所有障碍的索引find_nonzero_indices(mapFindRouteAStat, map_Ind1, map_Ind2);

2.3、有限时间的寻路计算

在寻路时需要考虑到实时性的要求,寻路的函数被封装为了,其中前两个参数为起点和终点,最后一个参数表示是为第几个机器人寻路的,寻路完成后路径会直接加到目标机器人要走的路径上去

getRoutePath(start_xy_int, end_xy_int,0);

getRoutePath函数并非直接调用了双向Astar寻路算法。函数中,对于较短的路径,一次性使用双向Astar得到路径

 //距离短直接进行运算得到结果// OutputData(LOG_PATH,0,"Direct Found Begin %f %f %f %f\n",start_xy_float[0],start_xy_float[1],end_xy_float[0],end_xy_float[1]);std::vector<std::array<float, 2>>pointstovisit_tmp;findroutevalid=findroute_Direct(start_xy_float,end_xy_float, FIND_ROUTE_AREA_SHIFT, SIZE_MAP, SIZE_MAP, mapFindRouteAStat, map_Ind1,map_Ind2, route_debug, &dis,pointstovisit_tmp,robot_id);if(!findroutevalid){//没有找到路径OutputData(LOG_PATH,0,"ID:%d Direct Found error\n"); }else{pointsToVisit[robot_id].insert(pointsToVisit[robot_id].end(), pointstovisit_tmp.begin(), pointstovisit_tmp.end());OutputData(LOG_PATH,0,"ID:%d %f %f %f %f\n",frame_ID,pointsToVisit[robot_id][0][0],pointsToVisit[robot_id][0][1],pointsToVisit[robot_id][1][0],pointsToVisit[robot_id][1][1]); }

对于较长的路径,如果要进行寻路,则会将创建一个任务列队,每次只运算有限的时间,这主要是考虑实时控制的要求:

myFindRouteTask.push_back({start_xy_float[0],start_xy_float[1],end_xy_float[0],end_xy_float[1],float(robot_id)});

模拟处理寻路任务时,其中while(findRouteOKFlag==FLAG_RUNNING)是模拟每帧不断处理的情况,事实上,每帧运行一次findroute_limit函数即可,因为函数中使用了std::chrono来限制每次运算的时间:

 if(!myFindRouteTask.empty()){float start_xy[2]={myFindRouteTask[0][0],myFindRouteTask[0][1]};float end_xy[2]={myFindRouteTask[0][2],myFindRouteTask[0][3]};//初始化任务findroute_limit_Init(start_xy,end_xy, 20,  SIZE_MAP,  SIZE_MAP,myFindRouteTask[0][4]);myFindRouteTask.erase(myFindRouteTask.begin());}while(findRouteOKFlag==FLAG_RUNNING){findroute_limit(mapFindRouteAStat, map_Ind1,map_Ind2, route_debug, &dis);}

实际运行处理时的函数是这样的:

void findLongRouteTask(void)
{//如果正在计算if(findRouteOKFlag==FLAG_RUNNING){findroute_limit(mapFindRouteAStat, map_Ind1,map_Ind2, route_debug, &dis);findLongRouteTask_Time++;//计算超时,不再计算了to do导出计算超时的点路径,超时导致不会再计算?if(findLongRouteTask_Time>500){findRouteOKFlag=FLAG_END;findLongRouteTask_Time=0;//一定删除目标点!!!!!!!!!!!!!!!!!!!!!!其实就是最后一个OutputData(LOG_LONG_PATH,0,"ID:%d robotID:%d findLongRouteTask END OVERTIME\n",frame_ID,robotFindRouteID);robotDestinations[robotFindRouteID].erase(robotDestinations[robotFindRouteID].end());}if(frame_ID%100==0){// OutputData(LOG_PATH,0,"ID:%d findLongRouteTask ing\n",frame_ID);}}else{// OutputData(LOG_PATH,0,"ID:%d findLongRouteTask FREE\n",frame_ID);//空闲则判断是否有任务没有完成//有任务没有执行完成if(!myFindRouteTask.empty()){findLongRouteTask_Time=0;float start_xy[2]={myFindRouteTask[0][0],myFindRouteTask[0][1]};float end_xy[2]={myFindRouteTask[0][2],myFindRouteTask[0][3]};//初始化任务findroute_limit_Init(start_xy,end_xy, 20,  SIZE_MAP,  SIZE_MAP,myFindRouteTask[0][4]);myFindRouteTask.erase(myFindRouteTask.begin());OutputData(LOG_LONG_PATH,0,"ID:%d robotID:%d findLongRouteTask Begin sx%f sy%f ex%f ey%f\n",frame_ID,robotFindRouteID,start_xy[0],start_xy[1],end_xy[0],end_xy[1]);}}
}

2.4、使用历史路网结构

loadRouteMemory();函数会加载历史走过的路径数据,因此曾经走过的路径不再需要寻路了。getRoutePath(start_xy_int, end_xy_int,0);函数会判断这条寻路能否使用历史的路网数据

主要加载的数据有这三个,在main.h中设置导出路径,会把历史的寻路数据直接导出来txt,加到Cpp文件就行了,非常方便:
在这里插入图片描述
简单介绍这三个的含义,routeMemoryBufTmp是路径数据,所有路径数据都存在这里面
routeMemoryLengthBufTmp是每条路径的长度,知道了了长度就能把routeMemoryBufTmp的全部路径的数据进行恢复了
unReachablePointTmp是寻路失败的目标点,如果这些点产生了货物,那么就会忽略这些货物。

float routeMemoryBufTmp[]={};
std::vector<int> routeMemoryLengthBufTmp={};
std::vector<int> unReachablePointTmp={};

加载的代码如下:

unsigned int index_tmp=0;
//赋值给要走的路径
for(int j=0;j<routeMemoryLengthBufTmp.size();j++)
{for(int i=0;i<routeMemoryLengthBufTmp[j];i++){routeMemoryBuf[j].push_back({routeMemoryBufTmp[0+2*index_tmp], routeMemoryBufTmp[1+2*index_tmp]});//涂黑路径边沿,方便进行路径重新调用setBitsAroundPosition(routeMemoryIndex[routeMemoryBufSize], routeMemoryBuf[routeMemoryBufSize][i][0], routeMemoryBuf[routeMemoryBufSize][i][1], ROUTE_MEMORYBUF_DIFFUSION);index_tmp++;}routeMemoryBufSize=routeMemoryBufSize+1;
}
for(int j=0;j<unReachablePointTmp.size();j=j+2)
{deletedTargets.push_back({unReachablePointTmp[j],unReachablePointTmp[j+1]});
}

我设置最多可以存储20000条历史路网数据,路网数据的索引使用了一点小技巧来加速。对于每个搜索得到的路网数据,我都创建了一个200x200的bit数组routeMemoryIndex,将路径节点和节点周围N格的数据都设置为1,其余为0。这样我得到一个寻路任务时,我只需要判断起点和终点在这个200x200的bit数组中的位置是否为1,就能判断能否使用这条路径了。

//先判断能否使用现有的路网结构
for(int i=0;i<routeMemoryBufSize;++i)
{if(routeMemoryIndex[i][start_xy[0]][start_xy[1]]==1&&routeMemoryIndex[i][end_xy[0]][end_xy[1]]==1){routememoryindex_tmp=i;//找到了现有路网,跳出For循环break;}
}

例如,红色为历史的路网数据。粉红色为将路径节点和节点周围N格的数据都设置为1的示意,在进行搜索时,如果起点和终点都位于一条路径的粉红色区域内,则判断为能使用这条历史路径,如蓝色圆圈所示的起点和终点。这样就会搜索起点到最短路径节点的距离,和终点到最短节点的距离,其余使用路网数据,由此可以省下许多时间。
在这里插入图片描述

2.5、中转站机制

奇奇怪怪的点无法搜索得出路径,那么我就设置了一个中转站机制,就是起点和终点位于给定区域的话,就先走到中转站,在前往目标点。但是这种方法逻辑复杂,唉,全书败笔,如果起点和终点分别位于station_area1、station_area2,那么就先前往中转区域station_area:

    TransferStation station;station.station_area1.clear();station.station_area2.clear();station.area1 = {{0, 0}, {100, 100}};   station.area2 = {{0, 100}, {100, 200}};station.station_area1.push_back({{32, 94}, {35, 96}});station.station_area1.push_back({{64, 93}, {66, 95}});station.station_area1.push_back({{80, 92}, {82, 95}});station.station_area2.push_back({{32, 105}, {35, 107}});station.station_area2.push_back({{64, 105}, {66, 107}});station.station_area2.push_back({{80, 105}, {82, 107}});map1TransferStation.push_back(station);

使用getRoutePathByTransfer(start_xy_int, end_xy_int,0);在寻路时调用中转站,实际上是对getRoutePath的二次封装。

2.6、一坨稀烂的机器人防碰撞

我用双向Astar得到关键节点,机器人前往节点的具体行动使用Astar算法(因为这段非常好寻路的,距离很短且没有障碍)行动时将其他机器人当作障碍来避障,效果很差,主要是狭窄通道有问题,多个机器人堵起来也有问题。

寻路没问题,就是要撞起来!!!

2.7、提前规划路径

会提前为机器人规划路径加入缓存,比如说我正在去拿货物,会提前规划从货物到码头的路径节点等等。

2.8、运行前修改main.h的日志导出路径,不然报错

3、双向A*寻路算法的python实现

参考:https://blog.csdn.net/m0_56662453/article/details/126426863

大佬现成的代码,学习的。双向Astar相比Astar节省了50%的时间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/775623.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[flask]执行上下文的四个全局变量

flask上下文全局变量&#xff0c;程序上下文、请求上下文、上下文钩子 -- - 夏晓旭 - 博客园 (cnblogs.com) 执行上下文 执行上下文&#xff1a;即语境&#xff0c;语意&#xff0c;在程序中可以理解为在代码执行到某一行时&#xff0c;根据之前代码所做的操作以及下文即将要…

Stable Diffusion XL之使用Stable Diffusion XL训练自己的AI绘画模型

文章目录 一 SDXL训练基本步骤二 从0到1上手使用Stable Diffusion XL训练自己的AI绘画模型2.1 配置训练环境与训练文件2.2 SDXL训练数据集制作(1) 数据筛选与清洗(2) 使用BLIP自动标注caption(3) 使用Waifu Diffusion 1.4自动标注tag(4) 补充标注特殊tag(5) 训练数据预处理(标注…

neo4j相同查询语句一次查询特慢再次查询比较快。

现象&#xff1a; neo4j相同查询语句一次查询特慢再次查询比较快。 分析&#xff1a; 查询语句 //查询同名方法match(path:Method) where id(path) in [244333030] and NOT path:Constructor//是rpc的方法match(rpc_method:Method)<-[:DECLARES]-(rpc_method_cls:Class) -…

从零开始为香橙派orangepi zero 3移植主线linux——1.uboot

从零开始为香橙派orangepi zero 3移植主线linux——1.uboot 0.前言一、准备二、制作引导文件1.BL312.SCP firmware (Crust)3.uboot 三、烧录四、运行 0.前言 之前买了块香橙派zero3&#xff0c;CPU是全志H618&#xff0c;四核cortex-A53&#xff0c;烧录了官方的ubuntu系统后就…

vscode上编辑vba

安装xvba插件更换vscode的工作目录启动扩展服务器在config.json中添加目标工作簿的名称加载excel文件&#xff08;必须带宏的xlsm&#xff09;这个扩展就会自动提取出Excel文件中的代码Export VBA&#xff08;编辑完成的VBA代码保存到 Excel文件 &#xff09;再打开excel文件可…

了解XSS和CSRF攻击与防御

什么是XSS攻击 XSS&#xff08;Cross-Site Scripting&#xff0c;跨站脚本攻击&#xff09;是一种常见的网络安全漏洞&#xff0c;它允许攻击者在受害者的浏览器上执行恶意脚本。这种攻击通常发生在 web 应用程序中&#xff0c;攻击者通过注入恶意脚本来利用用户对网站的信任&…

centos2anolis

我的centos7原地升级到anolis7记录 注意&#xff1a;如果是桌面版请先卸载firefox&#xff0c;否则so文件冲突。 参考&#xff1a; CentOS 7和8Linux系统迁移到国产Linux龙蜥Anolis OS 8手册_disable pam_pkcs11 module in pam configuration-CSDN博客 关于 CentOS 迁移龙蜥…

QT中的服务器与客户端

一、前言 本文主要讲讲QT中服务器与客户端的使用方法&#xff0c;QT已经封装好了&#xff0c;调用相应类直接访问即可。本文以QT中的QT中的TCP为例子&#xff0c;讲下使用方法以及线程中使用。 二、正文 2.1 Sever的使用方法 2.1.1 思路 QT中Sever使用的时候大致步骤为&…

网络链路层之(2)PPP协议

网络链路层之(2)PPP协议 Author: Once Day Date: 2024年3月27日 一位热衷于Linux学习和开发的菜鸟&#xff0c;试图谱写一场冒险之旅&#xff0c;也许终点只是一场白日梦… 漫漫长路&#xff0c;有人对你微笑过嘛… 全系列文章可参考专栏: 通信网络技术_Once-Day的博客-CSDN…

STM32学习笔记(6_8)- TIM定时器的编码器接口代码

无人问津也好&#xff0c;技不如人也罢&#xff0c;都应静下心来&#xff0c;去做该做的事。 最近在学STM32&#xff0c;所以也开贴记录一下主要内容&#xff0c;省的过目即忘。视频教程为江科大&#xff08;改名江协科技&#xff09;&#xff0c;网站jiangxiekeji.com 现在开…

【搜索引擎2】实现API方式调用ElasticSearch8接口

1、理解ElasticSearch各名词含义 ElasticSearch对比Mysql Mysql数据库Elastic SearchDatabase7.X版本前有Type&#xff0c;对比数据库中的表&#xff0c;新版取消了TableIndexRowDocumentColumnmapping Elasticsearch是使用Java开发的&#xff0c;8.1版本的ES需要JDK17及以上…

【unity】解决unity编译器安装中文汉化包失败

如果有的同学中文包安装失败&#xff0c;我们找到相应的编译器版本&#xff0c;点击在资源管理器中显示按钮&#xff0c; 我们点击当前目录的上一级&#xff0c;进入编译器目录。 找到modules.json文件双击打开 我们找到简体中文&#xff0c;复制downloadUrl后面的值到浏览…

云电脑安全性怎么样?企业如何选择安全的云电脑

云电脑在保障企业数字资产安全方面&#xff0c;采取了一系列严谨而全面的措施。随着企业对于数字化转型的深入推进&#xff0c;数字资产的安全问题日益凸显&#xff0c;而云电脑作为一种新兴的办公模式&#xff0c;正是为解决这一问题而生。云电脑安全吗&#xff1f;可以放心使…

Java常见限流用法介绍和实现

目录 一、现象 ​编辑 二、工具 ​​​​​​1、AtomicInteger,AtomicLong 原子类操作 ​​​​​​2、RedisLua ​​​​​​3、Google Guava的RateLimiter 1&#xff09; 使用 2&#xff09; Demo 3&#xff09; 优化demo 4、阿里开源的Sentinel 三、算法 1、计数…

『Apisix进阶篇』动态负载均衡:APISIX的实战演练与策略应用

&#x1f680;『Apisix系列文章』探索新一代微服务体系下的API管理新范式与最佳实践 【点击此跳转】 &#x1f4e3;读完这篇文章里你能收获到 &#x1f3af; 掌握APISIX中多种负载均衡策略的原理及其适用场景。&#x1f4c8; 学习如何通过APISIX的Admin API和Dashboard进行负…

python-pytorch获取FashionMNIST实际图片标签数据集

在查看pytorch官方文档的时候&#xff0c;在这里链接中https://pytorch.org/tutorials/beginner/basics/data_tutorial.html的Creating a Custom Dataset for your files章节&#xff0c;有提到要自定义数据集&#xff0c;需要用到实际的图片和标签。 在网上找了半天没找到&a…

Ceph——部署

Ceph简介 Ceph是一款开源的 SDS 分布式存储&#xff0c;它具备极高的可用性、扩展性和易用性&#xff0c;可用于存 储海量数据 Ceph的存储节点可部署在通用服务器上&#xff0c;这些服务器的 CPU 可以是 x86 架构的&#xff0c;也可以 是 ARM 架构的。 Ceph 存储节点之间相互…

政安晨:【深度学习神经网络基础】(一)—— 逐本溯源

政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: 政安晨的机器学习笔记 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; 与计算机一样的古老历史 神经网络的出现可追溯到20世纪40年…

ubuntu22.04系统安装Opencv4.8.0+Opencv-contrib4.8.0

一、安装下载所需工具 1.打开终端&#xff0c;输入以下命令来更新软件源&#xff1a; sudo apt-get update 2.安装wget&#xff1a; sudo apt-get install wget 3.下载opencv和opencv-contrib包&#xff1a; wget -O opencv-4.8.0.zip https://github.com/opencv/opencv/…

【漏洞复现】网络验证系统getInfo接口处存在SQL注入漏洞

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…