使用LangChain LCEL生成RAG应用、使用LangChain TruLens对抗RAG幻觉

# 导入LangChain的库
from langchain import *# 加载数据源
loader = WebBaseLoader()
doc = loader.load("https://xxx.html")# 分割文档对象
splitter = RecursiveCharacterTextSplitter(max_length=512)
docs = splitter.split(doc)# 转换文档对象为嵌入,并存储到向量存储器中
embedder = OpenAIEmbeddings()
vector_store = ChromaVectorStore()
for doc in docs:embedding = embedder.embed(doc.page_content)vector_store.add(embedding, doc)# 创建检索器
retriever = VectorStoreRetriever(vector_store, embedder)# 创建聊天模型
prompt = hub.pull("rlm/rag-prompt")
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)# 创建一个问答应用
def format_docs(docs):return "\n\n".join(doc.page_content for doc in docs)rag_chain = ({"context": retriever | format_docs, "question": RunnablePassthrough()}| prompt| llm| StrOutputParser()
)# 启动应用
rag_chain.invoke("What is main purpose of xxx.html?")

LangChain提供了一种专门的表达式语言,叫做LCEL(LangChain Expression Language),它可以让你用简洁和灵活的语法来定义和操作Chain。

LCEL语法基础

LCEL是一个用于构建复杂链式组件的语言,它支持流式处理、并行化、日志记录等功能。LCEL的基本语法规则是使用|符号将不同的组件连接起来,形成一个链式结构。|符号类似于Unix的管道操作符,它将一个组件的输出作为下一个组件的输入,从而实现数据的传递和处理。

为什么要用LCEL?

LCEL语法的核心思想是:一切皆为对象,一切皆为链。这意味着,LCEL语法中的每一个对象都实现了一个统一的接口:Runnable,它定义了一系列的调用方法(invoke, batch, stream, ainvoke, …)。这样,你可以用同样的方式调用不同类型的对象,无论它们是模型、函数、数据、配置、条件、逻辑等等。而且,你可以将多个对象链接起来,形成一个链式结构,这个结构本身也是一个对象,也可以被调用。这样,你可以将复杂的功能分解成简单的组件,然后用LCEL语法将它们组合起来,形成一个完整的应用。

LCEL语法还提供了一些组合原语,让你可以更灵活地控制链式结构的行为,例如:

  • 并行化:你可以使用parallel原语将多个对象并行执行,提高效率和性能。
  • 回退:你可以使用fallback原语为某个对象指定一个备选对象,当主对象执行失败时,自动切换到备选对象,保证应用的可用性和稳定性。
  • 动态配置:你可以使用config原语为某个对象指定一个配置对象,根据运行时的输入或条件,动态地修改对象的参数或属性,增加应用的灵活性和适应性。

TruLens

TruLens是面向神经网络应用的质量评估工具,它可以帮助你使用反馈函数来客观地评估你的基于LLM(语言模型)的应用的质量和效果。反馈函数可以帮助你以编程的方式评估输入、输出和中间结果的质量,从而加快和扩大实验评估的范围。你可以将它用于各种各样的用例,包括问答、检索增强生成和基于代理的应用。

TruLens的核心思想是,你可以为你的应用定义一些反馈函数,这些函数可以根据你的应用的目标和期望,对你的应用的表现进行打分或分类。例如:

  • 定义一个反馈函数来评估你的问答应用的输出是否与问题相关,是否有依据,是否有用。
  • 定义一个反馈函数来评估你的检索增强生成应用的输出是否符合语法规则,是否有创造性,是否有逻辑性。
  • 定义一个反馈函数来评估你的基于代理的应用的输出是否符合道德标准,是否有友好性,是否有诚实性。

TruLens可以让你在开发和测试你的应用的过程中,实时地收集和分析你的应用的反馈数据,从而帮助你发现和解决你的应用的问题,提高你的应用的质量和效果。你可以使用TruLens提供的易用的用户界面,来查看和比较你的应用的不同版本的反馈数据,从而找出你的应用的优势和劣势,以及改进的方向。

# 导入LangChain和TruLens
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.prompts.chat import ChatPromptTemplate,HumanMessagePromptTemplate
from trulens_eval import TruChain,Feedback, Huggingface, Tru, OpenAI as TruOpenAI
from trulens_eval.feedback.provider.langchain import Langchaintru = Tru()# 定义一个问答应用的提示模板
full_prompt = HumanMessagePromptTemplate(prompt=PromptTemplate(template="Provide a helpful response with relevant background information for the following: {prompt}",input_variables=["prompt"],)
)chat_prompt_template = ChatPromptTemplate.from_messages([full_prompt])# 创建一个LLMChain对象,使用llm和chat_prompt_template作为参数
llm = OpenAI()
chain = LLMChain(llm=llm, prompt=chat_prompt_template, verbose=True)# Initialize Huggingface-based feedback function collection class:
# Define a language match feedback function using HuggingFace.
hugs = Huggingface()
f_lang_match = Feedback(hugs.language_match).on_input_output()
# Question/answer relevance between overall question and answer.
provider = TruOpenAI()
f_qa_relevance = Feedback(provider.relevance).on_input_output()# 使用TruChain类来包装chain对象,指定反馈函数和应用ID
tru_recorder = TruChain(chain,app_id='Chain1_QAApplication',feedbacks=[f_lang_match,f_qa_relevance])# 使用with语句来运行chain对象,并记录反馈数据
with tru_recorder as recording:# 输入一个问题,得到一个回答chain("What is langchain?")# 查看反馈数据tru_record = recording.records[0]# 打印反馈数据print("tru_record:",tru_record)
# 启动tru展示控制台
tru.run_dashboard()

为了评估RAG的质量和效果,可以使用TruLens提供的RAG三角形(RAG Triad)的评估方法。RAG三角形是由三个评估指标组成的,分别是:

  • 上下文相关性(Context Relevance):评估输入和检索出的文档之间的相关性,以及文档之间的一致性。上下文相关性越高,说明检索系统越能找到与输入匹配的知识和信息,从而为LLM提供更好的上下文。
  • 有根据性(Groundedness):评估输出和检索出的文档之间的一致性,以及输出的可信度。有根据性越高,说明LLM越能利用检索出的文档来生成有依据的输出,从而避免产生幻觉或错误。
  • 答案相关性(Answer Relevance):评估输出和输入之间的相关性,以及输出的有用性。答案相关性越高,说明LLM越能理解输入的意图和需求,从而生成有用的输出,满足用户的目的。

RAG三角形的评估方法可以让我们从不同的角度来检验RAG的质量和效果,从而发现和改进RAG的问题。我们可以使用TruLens来实现RAG三角形的评估方法,具体步骤如下:

  1. 在LangChain中,创建一个RAG对象,使用RAGPromptTemplate作为提示模板,指定检索系统和知识库的参数。
  2. 在TruLens中,创建一个TruChain对象,包装RAG对象,指定反馈函数和应用ID。反馈函数可以使用TruLens提供的f_context_relevance, f_groundness, f_answer_relevance,也可以自定义。
  3. 使用with语句来运行RAG对象,并记录反馈数据。输入一个问题,得到一个回答,以及检索出的文档。
  4. 查看和分析反馈数据,根据RAG三角形的评估指标,评价RAG的表现。

下面是一个简单的示例,展示了如何在LangChain中使用TruLens来评估一个RAG问答应用:

# 导入LangChain和TruLens
from IPython.display import JSON# Imports main tools:
from trulens_eval import TruChain, Feedback, Huggingface, Tru
from trulens_eval.schema import FeedbackResult
tru = Tru()
tru.reset_database()# Imports from langchain to build app
import bs4
from langchain import hub
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import WebBaseLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.schema import StrOutputParser
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain_core.runnables import RunnablePassthrough
from trulens_eval.feedback.provider import OpenAI
import numpy as np
from trulens_eval.app import App
from trulens_eval.feedback import Groundedness# 加载文件
loader = WebBaseLoader(web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),bs_kwargs=dict(parse_only=bs4.SoupStrainer(class_=("post-content", "post-title", "post-header"))),
)
docs = loader.load()
# 分词
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
# 存入到向量数据库
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings(
))
# 定义一个RAG Chainretriever = vectorstore.as_retriever()prompt = hub.pull("rlm/rag-prompt")
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)def format_docs(docs):return "\n\n".join(doc.page_content for doc in docs)rag_chain = ({"context": retriever | format_docs, "question": RunnablePassthrough()}| prompt| llm| StrOutputParser()
)
# 使用TruChain类来包装rag对象,指定反馈函数和应用ID
# Initialize provider class
provider = OpenAI()
# select context to be used in feedback. the location of context is app specific.
context = App.select_context(rag_chain)
grounded = Groundedness(groundedness_provider=provider)
# f_context_relevance, f_groundness, f_answer_relevance 定义反馈函数
# Define a groundedness feedback function
f_groundedness = (Feedback(grounded.groundedness_measure_with_cot_reasons).on(context.collect()) # collect context chunks into a list.on_output().aggregate(grounded.grounded_statements_aggregator)
)# Question/answer relevance between overall question and answer.
f_qa_relevance = Feedback(provider.relevance).on_input_output()
# Question/statement relevance between question and each context chunk.
f_context_relevance = (Feedback(provider.qs_relevance).on_input().on(context).aggregate(np.mean))
# 使用with语句来运行rag对象,并记录反馈数据
tru_recorder = TruChain(rag_chain,app_id='Chain1_ChatApplication',feedbacks=[f_qa_relevance, f_context_relevance, f_groundedness])with tru_recorder as recording:# 输入一个问题,得到一个回答,以及检索出的文档llm_response = rag_chain.invoke("What is Task Decomposition?")# 查看反馈数据rec = recording.get() # use .get if only one record# 打印反馈数据print(rec)
# 启动tru展示控制台
tru.run_dashboard()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/774758.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

程序员35岁的职业困惑及应对之道

35岁,对许多程序员来说,是一个职业生涯的重要分水岭。在这个年龄,一些人开始感到迷茫和焦虑,担心自己的技能已经落后,难以跟上日新月异的技术变革。而另一些人则充满信心,认为多年来积累的丰富经验和扎实的技术功底,将助力他们在未来的职业道路上取得新的飞跃。 无疑,在AI、自…

一款比 K8S 更好用的编排工具——Nomod 单机部署

上下文 最近公司需要调研类似 EMCHub 这样支持算力共享的服务。第一直觉是使用 K8S 或 K3S,作为 CNCF 孵化的顶级项目,同时也是当前云原生生态使用最广的编排系统。但是在学习 EMC Hub 源码过程中,偶然发现它是基于 Nomad 做的集群管理。 相…

鸿蒙HarmonyOS应用开发之使用NAPI接口在主线程中进行模块加载

场景介绍 Node-API中的napi_load_module接口的功能是在主线程中进行模块的加载,当模块加载出来之后,可以使用函数napi_get_property获取模块导出的变量,也可以使用napi_get_named_property获取模块导出的函数,目前支持以下场景&a…

vue3从精通到入门2:虚拟DOM的生成与真实DOM的转化

虚拟 DOM 实现是 Vue 框架的核心部分之一,它负责在真实 DOM 之上抽象出一个轻量级的、可复用的 JavaScript 对象树,用于高效地更新视图。 什么是虚拟DOM? 虚拟 DOM 是一个编程概念,它将真实的 DOM 树抽象为一个轻量级的 JavaScript 对象树…

2024年学鸿蒙开发有“钱”途吗?

随着科技的不断发展和智能设备的普及,鸿蒙系统作为华为自主研发的操作系统,正逐渐受到市场的关注。2024年,学鸿蒙开发是否有前途,成为了很多开发者关心的问题。本文将从多个角度分析鸿蒙系统的发展前景,以及学习鸿蒙开…

Qt源程序编译及错误问题解决

Error 5 while parsing C:/qt-everywhere-src-6.6.2/qt-build/qtdeclarative/src/qmlmodels/meta_types/qt6qmlmodels_release_metatypes.json: illegal value .json 文件为空文件0字节,加 “[]”,不要引号。可以解决这类错误。 Qt编译 Qt for Windows…

寻找旋转排序数组中的最小值

题目链接 寻找旋转排序数组中的最小值 题目描述 注意点 1 < n < 5000-5000 < nums[i] < 5000nums中的所有整数 互不相同nums原来是一个升序排序的数组&#xff0c;并进行了 1 至 n 次旋转找出并返回数组中的最小元素设计一个时间复杂度为 O(log n) 的算法解决此…

2024年上半年数学建模竞赛一览表(附赠12场竞赛的优秀论文+格式要求)[电工、妈杯、数维、五一等12场]

为了帮助大家更好地备战今年上半年十二场数学建模竞赛&#xff0c;我们为大家收集到了这十二场相关竞赛的优秀论文以及格式要求&#xff0c;具体内容如下所示。 资料获取 在文末 文中资料来源 名称竞赛官方网站天府杯https://www.tfmssy.org.cn/认证杯http://www.tzmcm.cn/i…

AI Agent(LLM Agent)入门解读

1. 什么是AI Agent&#xff1f; AI Agent可以理解为一个智能体&#xff0c;包括感知模块、规划决策模块和行动模块&#xff0c;类似于人类的五官、大脑和肢体。它能帮助人类处理复杂的任务&#xff0c;并能根据环境反馈进行学习和调整。 五官可以理解为感知模块&#xff0c;大…

SpringBoot学习笔记一、SpringBoot应用初创建以及应用

一、创建SpringBoot的两种方式 1.Spring Initializr方式创建 &#xff08;1&#xff09;第一步在IDEA中选择 File-->NEW-->Project &#xff0c;选择 Spring Initializr &#xff0c;指定Maven坐标、包名、指定 JDK 版本 1.8 &#xff0c;然后点击Next 。如下图&#x…

配置文件 application properties

配置文件 application properties 1 参数交由配置文件集中管理 Value(“${}”)用于外部配置的属性注入 在之前编写的程序中进行文件上传时&#xff0c;需要调用AliOSSUtils工具类&#xff0c;将文件上传到阿里云OSS对象存储服务当中。而在调用工具类进行文件上传时&#xff0c…

tensorflow安装以及在Anaconda中安装使用

在遥感领域进行深度学习时&#xff0c;通常使用python进行深度学习&#xff0c;会使用到tensorflow的安装&#xff0c;今天小编就给大家介绍如何在Anaconda中安装tensorflow&#xff01; 下载Anaconda Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open…

浮动布局与定位布局

目录 前言: 浮动布局&#xff08;Float Layout&#xff09;: 定位布局&#xff08;Positioning Layout&#xff09;: 1.传统布局: 1.1文档流布局: 1.1.1基本的布局方式: 1.1.2 块级元素: 1.1.3调整元素: 1.2浮动布局: 1.2.1浮动布局允许元素向左或向右浮动&#xff0c;使…

前端学习-HTML基础

一、简介 1.介绍 网页就是html文件&#xff0c;前端编写代码->浏览器解析代码->呈现网页 谷歌浏览器Blink内核最好 2.Web标准 让网页设计排版更统一规范 结构&#xff1a;对网页元素进行整理和分类&#xff0c;html 表现&#xff1a;设置网页元素的板式、颜色、大小等外…

PTL库位电子标签系统仓库目视化管理解决方案

PTL库位电子标签系统是一种先进的仓库管理技术&#xff0c;通过数字化和智能化手段实现了仓库目视化管理&#xff0c;为仓储行业带来了革命性的改变。本文将从PTL库位电子标签系统的特点、优势以及在仓库目视化管理中的应用等方面进行探讨。 PTL库位电子标签系统具有以下特点&a…

STM32F10X开发环境的搭建

一、keil软件安装 找到keil软件包&#xff0c;解压缩&#xff0c;找到keil5安装软件&#xff1a; 鼠标右键选择以管理员权限运行。点击next&#xff0c;直到安装结束。 安装完成后在桌面会出现keil5软件图标&#xff1a; 然后再安装相应的芯片支持包&#xff1a;我们用的是stm…

精酿啤酒:多阶段发酵工艺的特点与优势

Fendi Club啤酒采用多阶段发酵工艺&#xff0c;这种工艺在啤酒酿造中具有显著的特点和优势。 首先&#xff0c;多阶段发酵工艺是一种复杂的酿造过程&#xff0c;它包括多个阶段的发酵和陈化过程。这种工艺需要切确控制每个阶段的时间、温度和酵母种类等参数&#xff0c;以确保…

基于DWT(离散小波变换)的图像水印算法,Matlab实现

博主简介&#xff1a; 专注、专一于Matlab图像处理学习、交流&#xff0c;matlab图像代码代做/项目合作可以联系&#xff08;QQ:3249726188&#xff09; 个人主页&#xff1a;Matlab_ImagePro-CSDN博客 原则&#xff1a;代码均由本人编写完成&#xff0c;非中介&#xff0c;提供…

商标跨类异议与跨类保护!

有个朋友对普推知产老杨说收到某邮件&#xff0c;名下商标让某公司抢注了现在公告期&#xff0c;让赶紧提出来异议去处理下&#xff0c;怎么会有这样的事&#xff0c;相同的名称基本上在同类别相关产品是无法公告和获得初审的。 经详细检索分析后&#xff0c;发现不是这样一回…

easyx查找算法可视化--顺序查找/二分查找/分块查找

&#x1f482; 个人主页:pp不会算法^ v ^ &#x1f91f; 版权: 本文由【pp不会算法v】原创、在CSDN首发、需要转载请联系博主 &#x1f4ac; 如果文章对你有帮助、欢迎关注、点赞、收藏(一键三连)和订阅专栏哦 文章目录 概述演示源码获取 概述 #顺序存储的顺序查找 √ #链式存…