软件杯 深度学习+opencv+python实现车道线检测 - 自动驾驶

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 卷积神经网络
    • 3.1卷积层
    • 3.2 池化层
    • 3.3 激活函数:
    • 3.4 全连接层
    • 3.5 使用tensorflow中keras模块实现卷积神经网络
  • 4 YOLOV5
  • 6 数据集处理
  • 7 模型训练
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的自动驾驶车道线检测算法研究与实现 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

从汽车的诞生到现在为止已经有一百多年的历史了,随着车辆的增多,交通事故频繁发生,成为社会发展的隐患,人们的生命安全受到了严重威胁。多起事故发生原因中,都有一个共同点,那就是因为视觉问题使驾驶员在行车时获取不准确的信息导致交通事故的发生。为了解决这个问题,高级驾驶辅助系统(ADAS)应运而生,其中车道线检测就是ADAS中相当重要的一个环节。利用机器视觉来检测车道线相当于给汽车安装上了一双“眼睛”,从而代替人眼来获取车道线信息,在一定程度上可以减少发生交通事故的概率。
本项目基于yolov5实现图像车道线检测。

2 实现效果

在这里插入图片描述

3 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。
在这里插入图片描述

3.1卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。
在这里插入图片描述

3.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。
在这里插入图片描述

3.3 激活函数:

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

3.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

3.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):def __init__(self):super().__init__()self.conv1 = tf.keras.layers.Conv2D(filters=32,             # 卷积层神经元(卷积核)数目kernel_size=[5, 5],     # 感受野大小padding='same',         # padding策略(vaild 或 same)activation=tf.nn.relu   # 激活函数)self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.conv2 = tf.keras.layers.Conv2D(filters=64,kernel_size=[5, 5],padding='same',activation=tf.nn.relu)self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)self.dense2 = tf.keras.layers.Dense(units=10)def call(self, inputs):x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]x = self.pool1(x)                       # [batch_size, 14, 14, 32]x = self.conv2(x)                       # [batch_size, 14, 14, 64]x = self.pool2(x)                       # [batch_size, 7, 7, 64]x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]x = self.dense1(x)                      # [batch_size, 1024]x = self.dense2(x)                      # [batch_size, 10]output = tf.nn.softmax(x)return output

4 YOLOV5

简介
基于卷积神经网络(convolutional neural network, CNN)的目标检测模型研究可按检测阶段分为两类,一 类 是 基 于 候 选 框
的 两 阶 段 检 测 , R-CNN 、 Fast R-CNN、Faster R-CNN、Mask R-CNN都是基于
目标候选框的两阶段检测方法;另一类是基于免候选框的单阶段检测,SSD、YOLO系列都是典型的基于回归思想的单阶段检测方法。

YOLOv5 目标检测模型 2020年由Ultralytics发布的YOLOv5在网络轻量化 上贡献明显,检测速度更快也更加易于部署。与之前
版本不同,YOLOv5 实现了网络架构的系列化,分别 是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、
YOLOv5x。这5种模型的结构相似,通过改变宽度倍 数(Depth multiple)来改变卷积过程中卷积核的数量, 通 过 改 变 深 度 倍 数
(Width multiple) 来 改 变 BottleneckC3(带3个CBS模块的BottleneckCSP结构)中
C3的数量,从而实现不同网络深度和不同网络宽度之 间的组合,达到精度与效率的平衡。YOLOv5各版本性能如图所示:

在这里插入图片描述

模型结构图如下:

在这里插入图片描述

YOLOv5s 模型算法流程和原理

YOLOv5s模型主要算法工作流程原理:

(1) 原始图像输入部分加入了图像填充、自适应 锚框计算、Mosaic数据增强来对数据进行处理增加了 检测的辨识度和准确度。

(2) 主干网络中采用Focus结构和CSP1_X (X个残差结构) 结构进行特征提取。在特征生成部分, 使用基于SPP优化后的SPPF结构来完成。

(3) 颈部层应用路径聚合网络和CSP2_X进行特征融合。

(4) 使用GIOU_Loss作为损失函数。

关键代码:

6 数据集处理

获取摔倒数据集准备训练,如果没有准备好的数据集,可自己标注,但过程会相对繁琐

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

数据保存

点击save,保存txt。

在这里插入图片描述

7 模型训练

配置超参数
主要是配置data文件夹下的yaml中的数据集位置和种类:

在这里插入图片描述

配置模型
这里主要是配置models目录下的模型yaml文件,主要是进去后修改nc这个参数来进行类别的修改。

在这里插入图片描述

目前支持的模型种类如下所示:

在这里插入图片描述
训练过程
在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/773655.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙操作系统-初识

HarmonyOS-初识 简述安装配置hello world1.创建项目2.目录解释3.构建页面4.真机运行 应用程序包共享包HARHSP 快速修复包 官方文档请参考:HarmonyOS 简述 1.定义:HarmonyOS是分布式操作系统,它旨在为不同类型的智能设备提供统一的操作系统&a…

电脑windows 蓝屏【恢复—无法加载操作系统,原因是关键系统驱动程序丢失或包含错误。.......】

当你碰到下图这种情况的电脑蓝屏,先别急着重装系统,小编本来也是想重装系统的,但是太麻烦,重装系统后你还得重装各种软件,太麻烦了!! 这种情况下,你就拿出你的启动U盘,进…

2016国赛-路径之谜

分析: 看到n*n以及四个方向移动,那么就直接使用dfs即可。根据题意可知起始位置是(0,0),终点位置是(n-1,n-1)。 又有要求靶子上的箭数决定了走的路径,那么我们就要加一个判断各个方位的箭数是否符合要求。 示例代码: …

JVM之堆

堆的核心概述 一个JVM实例只存在一个堆内存,堆也是内存管理的核心区域。 Java堆区在JVM启动的时候即被创建,其空间大小也就确定了。是JVM管理的最大一块内存空间。 堆内存的大小是可以调节的。 《JVM虚拟机规范》规定,堆可以处于物理上不连…

Pillow教程04:学习ImageDraw+Font字体+alpha composite方法,给图片添加文字水印

---------------Pillow教程集合--------------- Python项目18:使用Pillow模块,随机生成4位数的图片验证码 Python教程93:初识Pillow模块(创建Image对象查看属性图片的保存与缩放) Pillow教程02:图片的裁…

盲盒小程序开发,互联网盲盒下的潜在发展优势

近几年,我国潮玩市场经历了爆发式的发展阶段,尤其是盲盒市场屡创新高!盲盒商品主打IP衍生品、周边等具有收藏价值的商品,深受市场的追捧,满足了不同年龄群体的需求。面对盲盒的蓝海市场,众多的品牌也纷纷加…

Altium Designer的差分对布线走线技巧及规则设置

AD的PCB页面是有差分对布线的工具的,这种工具的使用首先需要自己添加差分对,才能进行交互式差分对布线: 在原理图中放置差分对标识,其中差分对要以_P和_N结尾来命名: 在原理图中放置差分对: 差分对在PCB中的…

浏览器导出excel

做java web项目时&#xff0c;经常遇到需要在页面上点击导出按钮&#xff0c;然后直浏览器接下载下来一个excel文档。 比如一个List<Person>的集合&#xff0c;需要将每个Person当做一行&#xff0c;输出到excel中去。其中Person实体类如下&#xff1a; import lombok.…

selenium元素定位--xpath定位--层级与逻辑组合定位

其他元素非唯一时&#xff0c;又不想用xpath绝对定位时&#xff0c;需要用到层级与逻辑定位. 一、层级属性结合定位&#xff1a; 遇到元素没有class、name、id等或属性动态变化情况时&#xff0c;可以找父节点元素&#xff0c;父级节点没有id时&#xff0c;可以继续往上找id&…

✨一键释放手机空间,让生活更流畅——手机清理大师超实用体验分享

&#x1f4dd;亲爱的朋友们&#xff0c;你是否也曾为手机里堆积如山的照片、杂乱无章的相册和不断提醒存储不足的问题而头疼不已呢&#xff1f;今天给大家安利一款我近期爱不释手的神器——手机清理大师&#xff0c;它就如同你的手机专属大扫除小能手&#xff0c;让你的手机瞬间…

Python爬虫:爬虫基本概念、流程及https协议

本文目录&#xff1a; 一、爬虫的基本概念1.为什么要学习爬虫1.1 数据的来源1.2 爬取到的数据用途 2.什么是爬虫3. 爬虫的更多用途 二、爬虫的分类和爬虫的流程1.爬虫的分类2.爬虫的流程3.robots协议 三、爬虫http和https1.http和https的概念2.浏览器发送HTTP请求的过,2.1 http…

数据分析面试题(41~50)

41、lstm的原理、lstm和rnn的区别 ①LSTM是一种常用于处理序列数据的循环神经网络&#xff08;RNN&#xff09;架构&#xff0c;特别适用于长序列的建模。其主要特点是通过门控机制来控制信息的流动&#xff0c;从而有效地解决了传统RNN在处理长序列时的梯度消失或爆炸的问题。…

Git学习笔记之基础

本笔记是阅读《git pro》所写&#xff0c;仅供参考。 《git pro》网址https://git-scm.com/book/en/v2 git官网 https://git-scm.com/ 一、git起步 1.1、检查配置信息 git config --list查看所有的配置以及它们所在的文件 git config --list --show-origin可能有重复的变量名…

云原生最佳实践系列 3:基于 SpringCloud 应用玩转 MSE

概述 随着业务不断创新&#xff0c;大型的单个应用和服务会被拆分为数个甚至数十个微服务&#xff0c;微服务架构已经被广泛应用。微服务的好处在于快速迭代&#xff0c;迭代过程保障线上流量不受损。依赖开源产品缺少专业运维工具&#xff0c;常常需要投入较大的运维人力和成…

SCI一区 | Matlab实现WOA-TCN-BiGRU-Attention鲸鱼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现WOA-TCN-BiGRU-Attention鲸鱼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测 目录 SCI一区 | Matlab实现WOA-TCN-BiGRU-Attention鲸鱼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测预测效果基本介绍模型描述程序…

Matter - nordic 自定义开发(4)

nRF Connect SDK 和 Matter SDK 的 matter 协议版本 nRF Connect SDK&#xff08;NCS&#xff09;是 Nordic 官方维护的&#xff0c;里面包含某个版本的 Matter SDK。Matter SDK 为 CSA 联盟维护的&#xff0c;里面包含各平台的SDK&#xff0c;其中包含了某个版本的 NCS。 需…

抖音视频关键词批量采集工具|无水印视频爬虫提取软件

抖音视频关键词批量采集工具&#xff1a; 我们很高兴地介绍最新推出的抖音视频关键词批量采集工具&#xff0c;该工具集成了多项强大功能&#xff0c;让您轻松实现视频内容的批量提取和下载。以下是详细的功能解析和操作说明&#xff1a; 主要功能&#xff1a; 关键词批量提取…

数据库与缓存一致性如何保证

最近建了一个技术交流群&#xff0c;欢迎志同道合的同学加入&#xff0c;群里主要讨论&#xff1a;分享业务解决方案、深度分析面试题并解答工作中遇到的问题&#xff0c;同时也能为我提供写作的素材。 欢迎加Q&#xff1a;312519302&#xff0c;进群讨论 前言 在工作中&#…

锦城软件定义网络实验(只用于教学,第八周结束后自行删除)

一、实验环境简介&#xff1a; Ubuntu 20.0.4 Ryu/Opendaylightmininetsflow(网络监视技术)Apifox/postman(REST API流表控制工具) 二、软件定义网络知识图谱 三、SDN知识概述 1.SDN的三个主要特征&#xff1a; 网络开放可编程&#xff1b; 控制平面与数据平面分离…

云架构(二) 大使模式

Ambassador pattern &#xff08;https://learn.microsoft.com/en-us/azure/architecture/patterns/ambassador&#xff09; 简单描述 创建一个助手服务&#xff0c;这个服务代表消费服务或者应用程序发送网络请求。大使服务可以看做是与客户机同一个位置的进程外代理。 这种…