860. 柠檬水找零
题目
在柠檬水摊上,每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。
每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。
注意,一开始你手头没有任何零钱。
给你一个整数数组 bills ,其中 bills[i] 是第 i 位顾客付的账。如果你能给每位顾客正确找零,返回 true ,否则返回 false 。
示例 1:
输入:bills = [5,5,5,10,20]
输出:true
解释:
前 3 位顾客那里,我们按顺序收取 3 张 5 美元的钞票。
第 4 位顾客那里,我们收取一张 10 美元的钞票,并返还 5 美元。
第 5 位顾客那里,我们找还一张 10 美元的钞票和一张 5 美元的钞票。
由于所有客户都得到了正确的找零,所以我们输出 true。
示例 2:
输入:bills = [5,5,10,10,20]
输出:false
解释:
前 2 位顾客那里,我们按顺序收取 2 张 5 美元的钞票。
对于接下来的 2 位顾客,我们收取一张 10 美元的钞票,然后返还 5 美元。
对于最后一位顾客,我们无法退回 15 美元,因为我们现在只有两张 10 美元的钞票。
由于不是每位顾客都得到了正确的找零,所以答案是 false。
解题思路
- 只有三种情况:
- 一:账单是5,直接收下
- 二:账单是10:消耗一个5,增加一个10
- 三:账单是20:优先消耗一个10,一个5,如果不够,再消耗三个5(这里就是贪心的思路,局部最优是先消耗10再消耗5)
代码
class Solution {
public:bool lemonadeChange(vector<int>& bills) {int five = 0, ten = 0, twenty = 0;for (int bill : bills) {// 情况一if (bill == 5) five++;// 情况二if (bill == 10) {if (five <= 0) return false;ten++;five--;}// 情况三if (bill == 20) {// 优先消耗10美元,因为5美元的找零用处更大,能多留着就多留着if (five > 0 && ten > 0) {five--;ten--;twenty++; // 其实这行代码可以删了,因为记录20已经没有意义了,不会用20来找零} else if (five >= 3) {five -= 3;twenty++; // 同理,这行代码也可以删了} else return false;}}return true;}
};
406. 根据身高重建队列
题目
假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。
请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。
示例 1:
输入:people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]]
输出:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
解释:
编号为 0 的人身高为 5 ,没有身高更高或者相同的人排在他前面。
编号为 1 的人身高为 7 ,没有身高更高或者相同的人排在他前面。
编号为 2 的人身高为 5 ,有 2 个身高更高或者相同的人排在他前面,即编号为 0 和 1 的人。
编号为 3 的人身高为 6 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
编号为 4 的人身高为 4 ,有 4 个身高更高或者相同的人排在他前面,即编号为 0、1、2、3 的人。
编号为 5 的人身高为 7 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
因此 [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 是重新构造后的队列。
解题思路
- 对于双维度的问题,先想办法确认一个维度,再考虑另一个维度。
- 题目的核心是一直在找前面比自己高的。理解这一点很关键。
- 因为K表示的是排在前面的人比当前的人高的个数,所以,最优先应该考虑的是按照身高从高到低排序,这样就能确认,自己前面和自己等高或者比自己高
- 若等高,则k小的在前面(题意如此)
- 然后按照K,将每个元素进行插入到对应位置。
排序完的people: [[7,0], [7,1], [6,1], [5,0], [5,2],[4,4]]
插入的过程:
插入[7,0]:[[7,0]]
插入[7,1]:[[7,0],[7,1]]
插入[6,1]:[[7,0],[6,1],[7,1]]
插入[5,0]:[[5,0],[7,0],[6,1],[7,1]]
插入[5,2]:[[5,0],[7,0],[5,2],[6,1],[7,1]]
插入[4,4]:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
代码
class Solution {
public:static bool cmp(const vector<int>& a, const vector<int>& b) {if (a[0] == b[0]) return a[1] < b[1];return a[0] > b[0];}vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {sort (people.begin(), people.end(), cmp);vector<vector<int>> que;for (int i = 0; i < people.size(); i++) {int position = people[i][1];que.insert(que.begin() + position, people[i]);}return que;}
};
452. 用最少数量的箭引爆气球
题目
有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组 points ,其中points[i] = [xstart, xend] 表示水平直径在 xstart 和 xend之间的气球。你不知道气球的确切 y 坐标。
一支弓箭可以沿着 x 轴从不同点 完全垂直 地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被 引爆 。可以射出的弓箭的数量 没有限制 。 弓箭一旦被射出之后,可以无限地前进。
给你一个数组 points ,返回引爆所有气球所必须射出的 最小 弓箭数 。
示例 1:
输入:points = [[10,16],[2,8],[1,6],[7,12]]
输出:2
解释:气球可以用2支箭来爆破:
-在x = 6处射出箭,击破气球[2,8]和[1,6]。
-在x = 11处发射箭,击破气球[10,16]和[7,12]。
解题思路
- 计算元素的重叠区间即可,题目写的太抽象了,理解了其实很直观。
- 为了让气球尽可能的重叠,需要对数组进行排序。
- 按照气球的起始位置和终止位置排序都可以
- 气球的最小右边界这个主要作用是,如果气球2是[2,8],气球3是[3,4],那气球3是在气球2靠中间左边的位置,如果这时候以气球2的右边界为射箭的位置,那就会错过气球3
- 因此要时刻更新最小右边界,这里的代码更新的是气球的最小右边界,其实等价于 要射的箭的x坐标。更新完之后,又可以以气球的区间来循环判断是否与下一个气球的左边界重叠。
代码
class Solution {
private:static bool cmp(const vector<int>& a, const vector<int>& b) {return a[0] < b[0];}
public:int findMinArrowShots(vector<vector<int>>& points) {if (points.size() == 0) return 0;sort(points.begin(), points.end(), cmp);int result = 1; // points 不为空至少需要一支箭for (int i = 1; i < points.size(); i++) {if (points[i][0] > points[i - 1][1]) { // 如果第i个气球的左边界比i-1个气球的右边界大,说明两者不相邻,就必须要加一个箭result++; // 需要一支箭}else { // 气球i和气球i-1挨着,这里需要注意的是,我们要找到气球的最小的右边界points[i][1] = min(points[i - 1][1], points[i][1]); // 更新重叠气球最小右边界}}return result;}
};