GIS+Python:地质灾害风险评价的智能化解决方案

地质灾害是指全球地壳自然地质演化过程中,由于地球内动力、外动力或者人为地质动力作用下导致的自然地质和人类的自然灾害突发事件。由于降水、地震等自然作用下,地质灾害在世界范围内频繁发生。我国除滑坡灾害外,还包括崩塌、泥石流、地面沉降等各种地质灾害,具有类型多样、分布广泛、危害性大的特点。地质灾害危险性评价着重于根据多种影响因素和区域选择来评估在某个区域中某个阶段发生的地质灾害程度。以此预测和分析未来某个地形单位发生地质灾害的可能性。根据地质灾害的孕育和发展机理,现有的数据资料和技术,以及实际应用需要,评价目标和研究经费等因素,采用适当的方法,可通过模型评估并分析研究区域对地质灾害的危险性。那么如何深刻理解地灾危险性评价模型?如何高效处理好致灾因子数据?如何针对具体区域建立切实可行的地质灾害危险性评价与灾后重建方案?本课程将提供一套基于ArcGIS的方法和案例。
GIS(Geographical Information System)——地理信息系统,是集地理、测绘、遥感和信息技术为一体,地理空间数据进行获取、管理、存储、显示、分析和模型化,以解决与空间位置有关的分析与管理问题。ArcGIS软件具有空间数据和属性数据的输入、编辑、查询、简单空间分析统计、输出、报表等功能,这为多源数据的有机整合提供了可能,也为建立灵活的分析模块提供了方便。空间分析功能是GIS得以广泛应用的重要原因之一。运用GIS分析技术,对各因素进行统计分析、信息叠加复合,研究地质灾害类型、分布规律级别和灾害损失度等,运用危险性指数等方法对地质灾害危险性现状评价与制图,将能使地质灾害风险评价更加效率化、科学化,为地质灾害数据库建设提供有力支撑。
随着由遥感、地理信息系统和全球定位系统为代表的新型测绘技术的发展,地质灾害数据的质量和数量大幅提升。地质灾害数据具有多源性、时空性和非线性等特点,如何对这些海量数据进行准确且可靠的分析尤为重要。从当前的发展趋势来看,使用机器学习模型已经成为滑坡易发性区划的主流;深度学习作为当前人工智能领域的研究热点,能够从给定样本空间中学习到各种复杂的拟合函数,在广泛受到关注。

了解全文点击: 《GIS+Python:地质灾害风险评价的智能化解决方案》

目录

    • 基本概念与平台讲解
    • 数据获取及预处理
    • 地质灾害风险评价模型与方法
    • 地质灾害风险性评价
    • GIS在灾后重建中的应用实践
    • 基于机器学习的滑坡易发性分析
    • 论文写作分析

基本概念与平台讲解

1、基本概念
地质灾害类型
地质灾害发育特征与分布规律
地质灾害危害特征
地质灾害孕灾地质条件分析
地质灾害诱发因素与形成机理
在这里插入图片描述
2、GIS原理与ArcGIS平台介绍
GIS简介
ArcGIS基础
空间数据采集与组织
空间参考
空间数据的转换与处理
ArcGIS中的数据编辑
地理数据的可视化表达
空间分析:
数字地形分析
叠置分析
距离制图
密度制图
统计分析
重分类
三维分析
空间数据库建立及应用
在这里插入图片描述
在这里插入图片描述
1)地质灾害风险调查评价成果信息化技术相关要求解读
2)数学基础设计
比例尺;坐标系类型:地理坐标系,投影坐标系;椭球参数;投影类型;坐标单位;投影带类型等。
3)数据库内容及要素分层
图层划分原则;图层划分及命名;图层内部属性表

在这里插入图片描述
4)数据库建立及入库
创建数据库、要素集、要素类、栅格数据和关系表等。
在这里插入图片描述
矢量数据(shp文件)入库
Table表入库:将崩塌、滑坡、泥石流等表的属性数据与灾害点图层关联。
栅格数据入库
栅格数据集入库:遥感影像数据、DEM、坡度图、坡向图、降雨量等值线图以及其他经过空间分析得到的各种栅格图像入库。
5)数据质量控制
利用Topology工具检查点线面及其之间的拓扑关系并修改;图属一致性检查与修改。
3、Python编译环境配置
Python自带编辑器IDLE使用
Anaconda集成环境安装及使用
PyCharm环境安装及使用
在这里插入图片描述

数据获取及预处理

1、数据类型介绍
2、点数据获取与处理
灾害点统计数据获取与处理
在这里插入图片描述
气象站点数据获取与处理
气象站点点位数据处理
气象数据获取
数据整理
探索性分析
数据插值分析
在这里插入图片描述
3、矢量数据的获取与处理
道路、断层、水系等矢量数据的获取
欧氏距离
核密度分析
河网密度分析
在这里插入图片描述
4、栅格数据获取与处理
DEM,遥感影像等栅格数据获取
影像拼接、裁剪、掩膜等处理
NoData值处理
如何统一行列号
在这里插入图片描述
5、NC数据获取与处理
NC数据简介
NC数据获取
模型构建器
NC数据如何转TIF?
在这里插入图片描述
6、遥感云计算平台数据获取与处理
遥感云平台数据简介
如何从云平台获取数据?
数据上传与下载
基本函数简介
植被指数提取
土地利用数据获取
在这里插入图片描述

地质灾害风险评价模型与方法

在这里插入图片描述
1、地质灾害易发性评价模型与方法
评价单元确定
易发性评价指标体系
易发性评价模型
权重的确定
2、滑坡易发性评价
评价指标体系
地形:高程、坡度、沟壑密度、地势起伏度等。
地貌:地貌单元、微地貌形态、总体地势等。
地层岩性:岩性特征、岩层厚度、岩石成因类型等
地质构造:断层、褶皱、节理裂隙等。
地震:烈度、动峰值加速度、历史地震活动情况等
工程地质:区域地壳稳定性,基岩埋深,主要持力层岩性、承载力、岩土体工程地质分区等。
常用指标提取
坡度、坡型、高程、地形起伏度、断裂带距离、工程地质岩组、斜坡结构、植被覆盖度、与水系距离等因子提取
在这里插入图片描述
指标因子相关性分析
(1)相关性系数计算与分析
在这里插入图片描述
(2)共线性诊断
在这里插入图片描述
评价指标信息量
在这里插入图片描述
评价指标权重确定
滑坡易发性评价结果分析与制图
滑坡易发性综合指数
易发性等级划分
易发性评价结果制图分析
在这里插入图片描述
2、崩塌易发性评价
3、泥石流易发性评价
泥石流评价单元提取
水文分析,沟域提取
土方纵坡分析
泥石流评价指标
崩滑严重性、泥沙沿程补给长度比、沟口泥石流堆积活动、沟谷纵坡降、区域构造影响程度、流域植被覆盖度、工程地质岩组、沿沟松散堆积物储量、流域面积、流域相对高差、河沟堵塞程度等
典型泥石流评价指标选取
在这里插入图片描述
评价因子权重确定
泥石流易发性评价结果分析与制图
泥石流易发性综合指数计算
泥石流的易发性分级确定
泥石流易发性评价结果
在这里插入图片描述
4、地质灾害易发性综合评价
综合地质灾害易发值=MAX [泥石流灾害易发值,崩塌灾害易发值,滑坡灾害易发值]

地质灾害风险性评价

1、地质灾害风险性评价
在这里插入图片描述
2、地质灾害危险性评价
危险性评价因子选取
在某种诱发因素作用下,一定区域内某一时间段发生特定规模和类型地质灾害的可能性。
区域构造复杂程度,活动断裂发育程度,地震活动等都可能诱发地质灾害;强降雨的诱发,灾害发生的频率、规模也会增强地质灾害发生的机率。
危险性评价因子量化
崩滑危险性因子量化
统计各级范围内的灾害个数及面积,利用信息量计算方法到各级的信息量值。
泥石流危险性评价因子权重
危险性评价与结果分析
3、地质灾害易损性评价
地质灾害易损性因子分析

人口易损性
房屋建筑易损性
农业易损性
林业易损性
畜牧业易损性
道路交通易损性
水域易损性
人口易损性评价因子提取
人口密度数据处理

用人口密度数据来量化人口易损性,基于各行政单元统计年鉴获取的人口数量,结合房屋建筑区数据,量化人口的空间分布,基于GIS的网格分析,得到单位面积上的人口数量即人口密度。
易损性赋值
人口易损性因子提取
建筑易损性评价
建筑区密度数据处理

用房屋建筑区密度数据来量化房屋建筑易损性,利用房屋建筑区数据,基于GIS的网格分析,得到单位面积上的房屋建筑区面积,即房屋建筑区密度。
易损性赋值
建筑物易损性因子提取
交通设施易损性评价
道路数据的获取
用 ArcGIS 缓冲分析功能,形成道路的面文件
不同类型的道路进行赋值

道路易损分布结果分析
综合易损性评价
综合易损性叠加权重
综合易损性评价结果提取与分析
4、地质灾害风险评价结果提取与分析
在这里插入图片描述

GIS在灾后重建中的应用实践

1、应急救援路径规划分析
表面分析、成本权重距离、栅格数据距离制图等空间分析;
利用专题地图制图基本方法,制作四川省茂县地质灾害应急救援路线图,
最佳路径的提取与分析
2、灾害恢复重建选址分析
确定选址的影响因子
确定每种影响因子的权重
收集并处理每种影响因子的数据:地形分析、距离制图分析,重分类
恢复重建选址分析
3、震后生态环境变化分析
使用该类软件强大的数据采集、数据处理、数据存储与管理、空间查询与空间分析、可视化等功能进行生态环境变化评价。
在这里插入图片描述
在这里插入图片描述

基于机器学习的滑坡易发性分析

Python数据清洗
Python库简介与安装
读取数据
统一行列数
缺失值处理
相关性分析/共线性分析
主成分分析法(PCA)降维
数据标准化
生成特征集
在这里插入图片描述
在这里插入图片描述
相关概念:
训练前是否有必要对特征归一化
为什么要处理缺失值(Nan值)
输入的特征间相关性过高会有什么影响
什么是训练集、测试集和验证集;为什么要如此划分
超参数是什么
什么是过拟合,如何避免这种现象
模型介绍:
逻辑回归模型
随机森林模型
支持向量机模型
实现方案:
在这里插入图片描述
一、线性概率模型——逻辑回归
介绍
连接函数的选取:Sigmoid函数
致灾因子数据集:数据介绍;相关性分析;逻辑回归模型预测;样本精度分析;分类混淆矩阵
注意事项
二、SVM支持向量机
线性分类器
SVM-核方法:核方法介绍;sklearn的SVM核方法
参量优化与调整
SVM数据集:支持向量机模型预测;样本精度分析;分类混淆矩阵
三、Random Forest的Python实现
数据集
数据的随机选取
待选特征的随机选取
相关概念解释
参量优化与调整:随机森林决策树深度调参;CV交叉验证定义;混淆矩阵;样本精度分析
基于pandas和scikit-learn实现Random Forest:数据介绍;随机森林模型预测;样本精度分析;分类混淆矩阵
四、方法比较分析
模型性能评估:K 折交叉验证的方法
精度分析:accuracy;precision;recall;F1-score,AUC
在这里插入图片描述

论文写作分析

1、论文写作要点分析
2、论文投稿技巧分析
在这里插入图片描述
3、论文案例分析
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/771940.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

3-Flume之拦截器与GangLia监控

Flume Interceptor 概述 Interceptor(拦截器)本身是Source的子组件之一,可以对数据进行拦截、过滤、替换等操作不同于Selector,一个Source上可以配置多个Interceptor,构成拦截器链。需要注意的是,后一个拦截器不能和前一个拦截…

芒果YOLOv8改进130:Neck篇,即插即用,CCFM重构跨尺度特征融合模块,构建CCFM模块,助力小目标检测涨点

芒果专栏 基于 CCFM 的改进结构,改进源码教程 | 详情如下🥇 💡本博客 改进源代码改进 适用于 YOLOv8 按步骤操作运行改进后的代码即可 即插即用 结构。博客 包括改进所需的 核心结构代码 文件 YOLOv8改进专栏完整目录链接:👉 芒果YOLOv8深度改进教程 | 🔥 订阅一个…

HarmonyOS 健康系统联系案例 创建项目

上文 HarmonyOS 健康系统联系案例 整体原型图介绍 我们 介绍了健康系统的整体 UI 然后 我们一点一点来 今天先搭个环境 首先 我们打开开发工具首页 创建项目 一个非常令人怀念的步骤啊 我们点击 Create Project 创建一个新的工程 模板 还是选最基础的 Empty Ability 然后 …

Docker系列

目录 练习:去DockerHub搜索并拉取一个Redis镜像 docker下载nacos 练习:去DockerHub搜索并拉取一个Redis镜像 目标: 1)去DockerHub搜索Redis镜像 2)查看Redis镜像的名称和版本 3)利用docker pull命令…

Java异常知识点详解

目录 1. 异常的概念与体系结构 1.1 异常的概念 1. 算术异常 2. 数组越界异常 3. 空指针异常 1.2 异常的体系结构 1.3 异常的分类 2. 异常的处理 2.1 防御式编程 2.2 异常的抛出 2.3 异常声明throws 2.4 try-catch捕获并处理 2.5 finally 2.4 异常的处理流程 3. 自…

Linux基本指令解析二

Linux基本指令解析二 常见指令1.date指令2.find指令3.grep指令4.zip/unzip指令5.tar指令6.bc指令7.uname –r指令 重要的几个热键关机 常见指令 1.date指令 date 指定格式显示时间: date %Y:%m:%d date 用法:date [OPTION]... [FORMAT] 1.在显示方面…

【Docker】Docker安全与最佳实践:保护你的容器化应用程序

欢迎来到英杰社区: https://bbs.csdn.net/topics/617804998 欢迎来到阿Q社区: https://bbs.csdn.net/topics/617897397 📕作者简介:热爱跑步的恒川,致力于C/C、Java、Python等多编程语言,热爱跑步&#xff…

PostgreSQL数据库中表的物理大小, 妙懂

数据库中表的物理大小 这是一个很有意思的话题。尤其是在我们做物理设计和空间大小评估的时候。 PostgreSQL中对于稍长一点的列,直接使用了TOAST表来存储,默认是会对表中的数据进行压缩的。关于TOAST, 以后或有时间专门做简单介绍。 先看看相关函数的定…

javaWeb学生宿舍管理系统

一、摘要 本博客介绍了如何使用Spring Boot和MySQL构建一个功能完善的JavaWeb学生宿舍管理系统。该系统分为三个角色:管理员、宿管和学生。管理员拥有对整个系统的全面管理权限,包括学生管理、宿舍管理、入住管理和管理员管理;宿管负责宿舍的…

3.Python数据分析—数据分析入门知识图谱索引(知识体系中篇)

3.Python数据分析—数据分析入门知识图谱&索引-知识体系中篇 一个人简介二数据获取和处理2.1 数据来源:2.2 数据清洗:2.2.1 缺失值处理:2.2.2 异常值处理: 2.3 数据转换:2.3.1 数据类型转换:2.3.2 数据…

【Java程序设计】【C00360】基于Springboot的考研互助交流平台(有论文)

基于Springboot的考研互助交流平台(有论文) 项目简介项目获取开发环境项目技术运行截图 项目简介 项目获取 🍅文末点击卡片获取源码🍅 开发环境 运行环境:推荐jdk1.8; 开发工具:eclipse以及i…

java常用应用程序编程接口(API)——IO流概述及字节流的使用

前言: IO流和File是用于把数据存放在硬盘里的工具。File可以把文件存至硬盘,但不能更改里面的数据。通过IO流可以改写硬盘里的数据。整理下学习笔记,打好基础,daydayup!!! IO流 I指Input,称为输入流:负责把…

智慧医疗包括哪些方面?智慧医疗发展前景如何?

近年来,随着云计算、物联网(internet of things,IOT)、移动互联网、大数据、人工智能(artificial intelligence,AI)、5G网络、区块链等新一代信息技术的逐步成熟和广泛应用,信息化已…

【码云Git提交】Windows

一、第一次提交 1.登录码云创仓库 2.观察创建后的提示,就有步骤命令了 3.我们在系统中打开一个测试文件夹窗口打开GitBash PS:(你需要提前装一个Node,本章不介绍) 我们打开一个创建的test测试文件夹窗口,…

阿里 Modelscope 创空间部署在本地环境操作文档

创建创空间的步骤直接跳过。 备注:我的电脑是Windows 第一步:获取创空间代码,直接下载代码太慢了,建议通过git获取代码 第二步:复制链接,打开cmd 直接粘贴回车下载。下载完之后的到了我的Service-Assistant文件夹。再git clone https://gith…

可编程液冷负载的核心功能

可编程液冷负载核心功能在于根据设备的工作状态和环境温度,自动调整冷却液的流量和温度,以实现精确的散热控制。这种技术以其高效、智能的特性,为多个领域提供了全新的散热解决方案。 可编程液冷负载的核心功能在于其可编程性,这意…

【倪琴仲尼式-雷伴】全新倪诗韵精品杉木古琴

试音中的用弦:梦音,视频录音无任何处理,所见即所得。 现琴比照片更好看。倪琴吊牌、琴额后面的编码和倪琴官网上的序列号是一一对应的,可查。 雷伴,“伴”字取意陪伴、相伴、依随。栗壳色,纯鹿角霜生漆工艺…

解决“ModuleNotFoundError: No module named ‘transformers’”错误的全面指南

一、问题背景与原因 在Python编程中,ModuleNotFoundError是一个常见的错误,表明解释器无法在指定的路径或Python环境中找到所需的模块。特别是当我们尝试导入像transformers这样的第三方库时,如果库没有被正确安装,就会遇到这样的…

稀碎从零算法笔记Day28-LeetCode:零钱兑换

前言:鸽了好多天了哈哈哈,虽然C站没更但是LC还是坚持刷的,任重道远啊!(可恶的寝室熄灯) 题型:动态规划 链接:322. 零钱兑换 - 力扣(LeetCode) 来源:LeetCode 题目描述…

紫鸾5.0:紫光云新一代敏捷应用开发平台全家桶

曾几何时,“瀑布式”占据了二十世纪软件开发的主流,开发时间往往以年计,一款软件应用动辄几年才能交付。而随着社会生产力的跃升,“瀑布式”已严重跟不上时代的节奏,2001年,“敏捷宣言”的发布,…