【C++】模板与泛型编程

文章目录

  • 1. 泛型编程
  • 2. 函数模板
    • 2.1 函数模板概念
    • 2.2 函数模板格式
    • 2.3 函数模板的原理
    • 2.4 函数模板的实例化
    • 2.5 模板参数的匹配原则
  • 3. 类模板
    • 3.1 类模板的定义格式
    • 3.2 类模板的实例化
  • 4. 非类型模板参数
  • 5. 模板的特化
    • 5.1 概念
    • 5.2 函数模板特化
    • 5.3 全特化
    • 5.4 偏特化
    • 5.5 类模板特化应用示例
  • 6. 模板分离编译
    • 6.1 什么是分离编译
    • 6.2 模板的分离编译
    • 6.3 解决方法
  • 7. class和typename的区别




1. 泛型编程


如何实现一个通用的交换函数呢?

void Swap(int& left, int& right)
{int temp = left;left = right;right = temp;
}
void Swap(double& left, double& right)
{double temp = left;left = right;right = temp;
}
void Swap(char& left, char& right)
{char temp = left;left = right;right = temp;
}
......

使用函数重载虽然可以实现,但是有一下几个不好的地方:

  1. 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函数
  2. 代码的可维护性比较低,一个出错可能所有的重载均出错

那能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码呢?
)
如果在C++中,也能够存在这样一个模具,通过给这个模具中填充不同材料(类型),来获得不同材料的铸件(即生成具体类型的代码),那将会节省许多头发。巧的是前人早已将树栽好,我们只需在此乘凉。

泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。

在这里插入图片描述

2. 函数模板


2.1 函数模板概念

函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本

2.2 函数模板格式

template<typename T1, typename T2, ......, typename Tn>
返回值类型 函数名(参数列表) {}

比如:

template<typename T>
void Swap(T& left, T& right)
{T temp = left;left = right;right = temp;
}

注意:typename是用来定义模板参数关键字也可以使用class(切记:不能使用struct代替class)

2.3 函数模板的原理

那么如何解决上面的问题呢?大家都知道,瓦特改良蒸汽机,人类开始了工业革命,解放了生产力。机器生产淘汰掉了很多手工产品。本质是什么,重复的工作交给了机器去完成。有人给出了论调:懒人创造世界。
在这里插入图片描述

⭐️:函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器

在这里插入图片描述
在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此。

2.4 函数模板的实例化

用不同类型的参数使用函数模板时,称为函数模板的实例化。模板参数实例化分为:隐式实例化和显式实例化

  1. 隐式实例化:让编译器根据实参推演模板参数的实际类型
template<class T>
T Add(const T& left, const T& right)
{return left + right;
}
int main()
{int a1 = 10, a2 = 20;double d1 = 10.0, d2 = 20.0;Add(a1, a2);Add(d1, d2);/*该语句不能通过编译,因为在编译期间,当编译器看到该实例化时,需要推演其实参类型通过实参a1将T推演为int,通过实参d1将T推演为double类型,但模板参数列表中只有一个T,编译器无法确定此处到底该将T确定为int 或者 double类型而报错注意:在模板中,编译器一般不会进行类型转换操作,因为一旦转化出问题,编译器就需要背黑锅Add(a1, d1);*/// 此时有两种处理方式:1. 用户自己来强制转化 2. 使用显式实例化Add(a1, (int)d1);return 0;
}
  1. 显式实例化:在函数名后的<>中指定模板参数的实际类型
template<class T>
T Add(const T& left, const T& right)
{return left + right;
}int main(void)
{int a = 10;double b = 20.0;// 显式实例化Add<int>(a, b);return 0;
}

⚠️:如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错。

2.5 模板参数的匹配原则

  1. 一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数
// 专门处理int的加法函数
int Add(int left, int right)
{return left + right;
}
// 通用加法函数
template<class T>
T Add(T left, T right)
{return left + right;
}
void Test()
{Add(1, 2); // 与非模板函数匹配,编译器不需要特化Add<int>(1, 2); // 调用编译器特化的Add版本
}
  1. 对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板
// 专门处理int的加法函数
int Add(int left, int right)
{return left + right;
}
// 通用加法函数
template<class T1, class T2>
T1 Add(T1 left, T2 right)
{return left + right;
}
void Test()
{Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函数
}
  1. 模板函数不允许自动类型转换,但普通函数可以进行自动类型转换


3. 类模板


3.1 类模板的定义格式

template<class T1, class T2, ..., class Tn>
class 类模板名
{// 类内成员定义
};
// 动态顺序表
// 注意:Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具
template<class T>
class Vector
{
public:Vector(size_t capacity = 10): _pData(new T[capacity]), _size(0), _capacity(capacity){}// 使用析构函数演示:在类中声明,在类外定义。~Vector();void PushBack(const T& data)void PopBack();// ...size_t Size() { return _size; }T& operator[](size_t pos){assert(pos < _size);return _pData[pos];}private:T* _pData;size_t _size;size_t _capacity;
};
// 注意:类模板中函数放在类外进行定义时,需要加模板参数列表
template <class T>
Vector<T>::~Vector()
{if (_pData)delete[] _pData;_size = _capacity = 0;
}

3.2 类模板的实例化

类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<>中即可,类模板名字不是真正的类,而实例化的结果才是真正的类

// Vector类名,Vector<int>才是类型
Vector<int> s1;
Vector<double> s2;


4. 非类型模板参数


模板参数分类类型形参与非类型形参。

类型形参即:出现在模板参数列表中,跟在class或者typename之类的参数类型名称。

非类型形参,就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当成常量来使用。

namespace hyt
{// 定义一个模板类型的静态数组template<class T, size_t N = 10>class array{public:T& operator[](size_t index) { return _array[index]; }const T& operator[](size_t index)const { return _array[index]; }size_t size()const { return _size; }bool empty()const { return 0 == _size; }private:T _array[N];size_t _size;};
}

注意:

  1. 浮点数、类对象以及字符串是不允许作为非类型模板参数的
  2. 非类型的模板参数必须在编译期间就能确认结果


5. 模板的特化


5.1 概念

通常情况下,使用模板可以实现一些与类型无关的代码,但对于一些特殊类型的可能会得到一些错误的结果,需要特殊处理,比如:实现了一个专门用来进行小于比较的函数模板

// 函数模板 -- 参数匹配
template<class T>
bool Less(T left, T right)
{return left < right;
}
int main()
{cout << Less(1, 2) << endl; // 可以比较,结果正确Date d1(2022, 7, 7);Date d2(2022, 7, 8);cout << Less(d1, d2) << endl; // 可以比较,结果正确Date* p1 = &d1;Date* p2 = &d2;cout << Less(p1, p2) << endl; // 可以比较,结果错误return 0;
}

可以看到,Less绝对多数情况下都可以正常比较,但是在特殊场景下就得到错误的结果。上述示例中,p1指向的d1显然小于p2指向的d2对象,但是Less内部并没有比较p1和p2指向的对象内容,而比较的是p1和p2指针的地址,这就无法达到预期而错误

此时,就需要对模板进行特化。即:在原模板类的基础上,针对特殊类型所进行特殊化的实现方式。 模板特化中分为函数模板特化和类模板特化

5.2 函数模板特化

函数模板的特化步骤:

  1. 必须要先有一个基础的函数模板
  2. 关键字template后面接一对空的尖括号<>
  3. 函数名后跟一对尖括号,尖括号中指定需要特化的类型
  4. 函数形参表:必须要和模板函数的基础参数类型完全相同,如果不同编译器可能会报一些奇怪的错误。
// 函数模板 -- 参数匹配
template<class T>
bool Less(T left, T right)
{return left < right;
}
// 对Less函数模板进行特化
template<>
bool Less<Date*>(Date* left, Date* right)
{return *left < *right;
}
int main()
{cout << Less(1, 2) << endl;Date d1(2022, 7, 7);Date d2(2022, 7, 8);cout << Less(d1, d2) << endl;Date* p1 = &d1;Date* p2 = &d2;cout << Less(p1, p2) << endl; // 调用特化之后的版本,而不走模板生成了return 0;
}

注意:一般情况下如果函数模板遇到不能处理或者处理有误的类型,为了实现简单通常都是将该函数直接给出。

bool Less(Date* left, Date* right)
{return *left < *right;
}

该种实现简单明了,代码的可读性高,容易书写,因为对于一些参数类型复杂的函数模板,特化时特别给出,因此函数模板不建议特化。

5.3 全特化

全特化即是将模板参数列表中所有的参数都确定化。

template<class T1, class T2>
class Data
{
public:Data() { cout << "Data<T1, T2>" << endl; }
private:T1 _d1;T2 _d2;
};
template<>
class Data<int, char>
{
public:Data() { cout << "Data<int, char>" << endl; }
private:int _d1;char _d2;
};
void TestVector()
{Data<int, int> d1;Data<int, char> d2;
}

在这里插入图片描述

5.4 偏特化

偏特化:任何针对模板参数进一步进行条件限制设计的特化版本。比如对于以下模板类:

// 将第二个参数特化为int
template <class T1>
class Data<T1, int>
{
public:Data() { cout << "Data<T1, int>" << endl; }
private:T1 _d1;int _d2;
};

偏特化有以下两种表现方式:

  • 部分特化
    将模板参数类表中的一部分参数特化
// 将第二个参数特化为int
template <class T1>
class Data<T1, int>
{
public:Data() { cout << "Data<T1, int>" << endl; }
private:T1 _d1;int _d2;
};
  • 参数更进一步的限制
    偏特化并不仅仅是指特化部分参数,而是针对模板参数更进一步的条件限制所设计出来的一个特化版本。
//两个参数偏特化为指针类型
template <typename T1, typename T2>
class Data <T1*, T2*>
{
public:Data() { cout << "Data<T1*, T2*>" << endl; }private:T1 _d1;T2 _d2;
};
//两个参数偏特化为引用类型
template <typename T1, typename T2>
class Data <T1&, T2&>
{
public:Data(const T1& d1, const T2& d2): _d1(d1), _d2(d2){cout << "Data<T1&, T2&>" << endl;}private:const T1& _d1;const T2& _d2;
};
void test2()
{Data<double, int> d1; // 调用特化的int版本Data<int, double> d2; // 调用基础的模板 Data<int*, int*> d3; // 调用特化的指针版本Data<int&, int&> d4(1, 2); // 调用特化的指针版本
}

5.5 类模板特化应用示例

有如下专门用来按照小于比较的类模板Less:

#include<vector>
#include <algorithm>
template<class T>
struct Less
{bool operator()(const T& x, const T& y) const{return x < y;}
};
int main()
{Date d1(2022, 7, 7);Date d2(2022, 7, 6);Date d3(2022, 7, 8);vector<Date> v1;v1.push_back(d1);v1.push_back(d2);v1.push_back(d3);// 可以直接排序,结果是日期升序sort(v1.begin(), v1.end(), Less<Date>());vector<Date*> v2;v2.push_back(&d1);v2.push_back(&d2);v2.push_back(&d3);// 可以直接排序,结果错误日期还不是升序,而v2中放的地址是升序// 此处需要在排序过程中,让sort比较v2中存放地址指向的日期对象// 但是走Less模板,sort在排序时实际比较的是v2中指针的地址,因此无法达到预期sort(v2.begin(), v2.end(), Less<Date*>());return 0;
}

通过观察上述程序的结果发现,对于日期对象可以直接排序,并且结果是正确的。但是如果待排序元素是指针,结果就不一定正确。因为:sort最终按照Less模板中方式比较,所以只会比较指针,而不是比较指针指向空间中内容,此时可以使用类版本特化来处理上述问题:

// 对Less类模板按照指针方式特化
template<class T>
struct Less
{bool operator()(T x, T y) const{return x < y;}
};// 偏特化
template<class T>
struct Less<T*>
{bool operator()(T* x, T* y) const{return *x < *y;}
};// 全特化
template<>
struct Less<Date*>
{bool operator()(Date* x, Date* y) const{return *x < *y;}
};

特化之后,在运行上述代码,就能得到正确的结果


6. 模板分离编译


6.1 什么是分离编译

一个程序(项目)由若干个源文件共同实现,而每个源文件单独编译生成目标文件,最后将所有目标文件链接起来形成单一的可执行文件的过程称为分离编译模式。

6.2 模板的分离编译

假如有以下场景,模板的声明与定义分离开,在头文件中进行声明,源文件中完成定义:

// a.h
template<class T>
T Add(const T& left, const T& right);// a.cpp
template<class T>
T Add(const T& left, const T& right)
{return left + right;
}// main.cpp
#include"a.h"
int main()
{Add(1, 2);Add(1.0, 2.0);return 0;
}

我们这样写是不能完成编译的,分析如下:
在这里插入图片描述

6.3 解决方法

  1. 将声明和定义放到一个文件"xxx.hpp"里面或者"xxx.h"其实也是可以的。 推荐使用这种
  2. 模板定义的位置显示实例化。这种方法因为要先将会用到的类型显示实例化出来,比较繁琐,所以不推荐使用
// a.h
#include <iostream>
using namespace std;
template<class T>
T Add(const T& left, const T& right);// a.cpp
#include "a.hpp"
// 显示实例化int类型
template    // 注:这里没有<>
int Add<int>(const int&, const int&);// 显示实例化double类型
template double Add<double>(const double&, const double&);template<class T>
T Add(const T& left, const T& right)
{cout << "T Add(const T& left, const T& right)" << endl;return left + right;
}// main.cpp
#include"a.hpp"
int main()
{Add(1, 2);Add(1.0, 2.0);return 0;
}


7. class和typename的区别


在C++模板中,classtypename是用于声明模板参数类型的关键字,它们在大多数情况下是没有什么区别的,但在一下情况下,还是有些区别:

  • 当模板参数可能是类型别名或模板类型时,使用 typename 可以更明确地表示这是一个类型。
  • 在某些情况下,如在模板成员函数中引用类的成员类型或在模板类内部定义类型别名时,使用 typename 是必需的,而使用 class 可能会导致编译错误。

下面我展示一下模板成员函数中引用类的成员类型时使用typename的必要性:

template <typename T>
class MyClass {
public:void myMethod() {// 错误:使用 class 无法正确识别成员类型T::Type memberType;// 正确:使用 typename 可以正确识别成员类型typename T::Type memberType;}
};// 假设有一个类派生自 MyClass
class DerivedClass : public MyClass<DerivedClass> {
public:using Type = int;
};int main() {DerivedClass obj;obj.myMethod();return 0;
}

在上述示例中, MyClass 是一个模板类, myMethod 是其中的一个成员函数。在 myMethod 中,尝试使用 T::Type 来引用类的成员类型。如果使用 class 关键字,如 T::Type memberType; ,可能会导致编译错误,因为编译器无法正确识别 Type 是类的成员类型。

然而,使用 typename 关键字,如 typename T::Type memberType; ,可以明确地告诉编译器 Type 是类的成员类型,从而避免编译错误。

这种情况在模板类内部定义类型别名时也类似。如果在模板类内部使用 class 来定义类型别名,可能会导致错误。而使用 typename 可以正确地定义类型别名。

通过使用 typename ,可以确保在模板代码中正确地识别和使用类的成员类型和类型别名,避免潜在的编译错误。这样的例子在实际编程中可能会更复杂,但原理是相同的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/770948.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker 搭建Redis集群

目录 1. 3主3从架构说明 2. 3主3从Redis集群配置 2.1关闭防火墙启动docker后台服务 2.2 新建6个docker容器实例 2.3 进去任意一台redis容器&#xff0c;为6台机器构建集群关系 2.4 进去6381&#xff0c;查看集群状态 3. 主从容错切换迁移 3.1 数据读写存储 3.1.1 查看…

【JDBC编程】基于MySql的Java应用程序中访问数据库与交互数据的技术

꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好&#xff0c;我是xiaoxie.希望你看完之后,有不足之处请多多谅解&#xff0c;让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN …

java switch用法

满足那个条件&#xff0c;就从那个入口进入&#xff0c;没有break就继续&#xff08;是这样设计的&#xff0c;需要自己加break;&#xff09;&#xff0c;一般都是要加break的。 switch (表达式) 表达式只能是【整型、char、String.】 import java.util.Scanner;public class…

微服务day07 -- ES集群

4.集群 单机的elasticsearch做数据存储&#xff0c;必然面临两个问题&#xff1a;海量数据存储问题、单点故障问题。 海量数据存储问题&#xff1a;将索引库从逻辑上拆分为N个分片&#xff08;shard&#xff09;&#xff0c;存储到多个节点 单点故障问题&#xff1a;将分片数…

Review(一)

&#x1f308;个人主页&#xff1a;Rookie Maker &#x1f525; 系列专栏&#xff1a;Rookie review &#x1f3c6;&#x1f3c6;关注博主&#xff0c;随时获取更多关于IT的优质内容&#xff01;&#x1f3c6;&#x1f3c6; &#x1f600;欢迎来到小田代码世界~ &#x1f601…

DRC检查及丝印的调整

DRC检查及丝印的调整 综述&#xff1a;本文主要讲述AD软件中DRC检查、丝印的调整以及logo的添加的相关步骤&#xff0c;附加logo添加的脚本链接和大量操作图片&#xff0c;使步骤详细直观。 1. 点击“工具”→“设计规则检查”→“运行DRC”。&#xff08;一开始可以只开启电…

一个程序从编译到运行的全过程

一个程序从编译到运行的全过程 一个程序从编译到运行的全过程编译预处理编译 汇编链接载入虚拟内存用户空间 总结 一个程序从编译到运行的全过程 每次用编译器写完一个程序后&#xff0c;我们会进行调试和执行&#xff0c;将代码的结果输出在我们的电脑屏幕上&#xff0c;但是…

Python爬虫学习完整版

一、什么是爬虫 网络爬虫&#xff0c;是一种按照一定规则&#xff0c;自动抓取互联网信息的程序或者脚本。由于互联网数据的多样性和资源的有限性&#xff0c;根据用户需求定向抓取相关网页并分析也成为如今主流的爬取策略。 1 爬虫可以做什么 你可以爬取网络上的的图片&#…

全民采矿石赚钱小程序源码,附带详细搭建教程

安装教程 1、环境用宝塔Nginxphp7.0或者以下版本 2、可以更换各种模板&#xff0c;懂代码和标签的可以改模板&#xff0c;不懂的可以直接上站 3、上站前记得添加关键词和内容库 4、伪静态在绑定完百度站长之后再添加 目录说明&#xff1a; data/keyword 放关键词 标签&#xff…

OpenLayers基础教程——WebGLPoints图层样式的设置方法

1、前言 前一篇博客介绍了如何在OpenLayers中使用WebGLPoints加载海量数据点的方法&#xff0c;这篇博客就来介绍一下WebGLPoints图层的样式设置问题。 2、样式运算符 在VectorLayer图层中&#xff0c;我们只需要创建一个ol.style.Style对象即可&#xff0c;WebGLPoints则不…

浅谈Webmail邮件还原

Webmail还原&#xff0c;其实也就是HTTP协议的还原&#xff0c;而HTTP协议的还原&#xff0c;核心部分是TCP会话的重组。在TCP会话进行重组之后&#xff0c;再对重组的报文进行HTTP解析&#xff0c;得到Webmail中相应的信息。 由于每个邮件服务商实现Webmail的方式都各不相同&a…

LabVIEW智能降噪系统

LabVIEW智能降噪系统 随着噪声污染问题的日益严重&#xff0c;寻找有效的降噪技术变得尤为关键。介绍了一种基于LabVIEW平台开发的智能降噪系统&#xff0c;该系统能够实时采集环境噪声&#xff0c;并通过先进的信号处理技术实现主动降噪&#xff0c;从而有效改善生活和工作环…

CV论文--2024.3.26

1、DiffusionMTL: Learning Multi-Task Denoising Diffusion Model from Partially Annotated Data 中文标题&#xff1a;DiffusionMTL&#xff1a;从部分注释的数据中学习多任务去噪扩散模型 简介&#xff1a;最近&#xff0c;人们对于从部分标注数据中学习多个密集场景理解任…

qt table 简易封装,样式美化,以及 合并表格和颜色的区分 已解决

在需求中&#xff0c; 难免会使用 table 进行渲染窗口&#xff0c;做一个简单的封装。美化表格最终效果&#xff01;&#xff01;&#xff01; 代码部分 // 显示 20行 20列CCendDetailsInfoTableWidget* table new CCendDetailsInfoTableWidget(20,10);for (int i 0; i < …

蓝桥杯2023年第十四届省赛真题-买瓜|DFS+剪枝

题目链接&#xff1a; 0买瓜 - 蓝桥云课 (lanqiao.cn) 蓝桥杯2023年第十四届省赛真题-买瓜 - C语言网 (dotcpp.com) &#xff08;蓝桥官网的数据要求会高一些&#xff09; 说明&#xff1a; 这道题可以分析出&#xff1a;对一个瓜有三种选择&#xff1a; 不拿&#xff0c…

Hbase解决ERROR: KeeperErrorCode = ConnectionLoss for /hbase/master报错

在使用hbase时出错&#xff0c;错误如下图&#xff1a; 错误原因&#xff1a; 返回去检查启动的Hadoop与zookeeper&#xff0c;发现zookeeper的状态不对&#xff0c;重新启动了一下zookeeper&#xff0c;确保所有机器的zookeeper都启动起来了就可以了。

微服务(基础篇-004-Feign)

目录 http客户端Feign Feign替代RestTemplate&#xff08;1&#xff09; Feign的介绍&#xff08;1.1&#xff09; 使用Feign的步骤&#xff08;1.2&#xff09; 自定义配置&#xff08;2&#xff09; 配置Feign日志的两种方式&#xff08;2.1&#xff09; Feign使用优化…

【C++】哈希应用之位图

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》《算法》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 1.位图的概念 2.位…

解决“Pycharm中Matplotlib图像不弹出独立的显示窗口”问题

matplotlib的绘图的结果默认显示在SciView窗口中, 而不是弹出独立的窗口, 这样看起来就不是很舒服&#xff0c;不习惯。 通过修改设置&#xff0c;改成独立弹出的窗口。 File—>Settings—>Tools—>Python Scientific—>Show plots in toolwindow 将√去掉即可

初识C++(三)构造函数和析构函数

目录 一、构造函数&#xff1a; 1.构造函数的概念&#xff1a; 2.构造函数的特性&#xff1a; 3.构造函数的形式&#xff1a; 4.为什么要引出构造函数这一概念 5.默认构造函数包括&#xff1a; 6.对默认生成的构造函数不处理内置类型的成员这事的解决办法&#xff1a; …