竞赛 python opencv 深度学习 指纹识别算法实现

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 python opencv 深度学习 指纹识别算法实现

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 指纹识别方式

目前市面上有两种指纹识别,分别是光学式和电容式指纹识别。

2.1 电容式指纹识别

电容式指纹识别要比光学式的复杂得多,其原理是将压力感测、电容感测、热感测等感测器整合于一块芯片中,当指纹按压芯片表面时,内部电容感测器会根据指纹波峰与波谷而产生的电荷差(或是温差),形成指纹影像,再通过与算法内部的指纹库进行匹配,从而完成指纹识别。

在这里插入图片描述

电容式指纹识别技术较为复杂,对技术研发和积累有较高要求,并且涉及大量专利,算法得实现也相对困难,所以目前全球只有少数公司能在这方面提供领先的技术产品。

2.2 光学式指纹识别

然后是光学式指纹识别,大家常见的指纹考勤机就是光学式指纹识别。

这类光学式指纹识别主要包括4个方面功能

  • 1.指纹模块负责采集指纹图像。
  • 2.数字信号处理器主要把采集到的指纹图像转化为数字信号。
  • 3.微控制器是整个系统的控制单元,在这里将进行指纹的验证以及输出指令。
  • 4.液晶显示器将输出指纹验证结果。

当我们把手指放在指纹考勤机上时,通过镜面反射原理,指纹模块就会采集指纹图像

在这里插入图片描述

接着指纹图像就会被数字信号处理器转换成数字信号

在这里插入图片描述

然后通过微控制器将数字信号与指纹库里的指纹进行匹配,匹配结果将通过液晶显示器显示出来。这就是光学式指纹识别的工作原理。

电容式与光学式指纹识别主要在指纹的采集方式上拥有较大差异,而在指纹的验证过程中则基本类似。然而因为电容式指纹识别拥有体积小、适用性广的优点,已经有越来越多的设备采用电容式指纹识别,未来的主流将是电容式指纹识别。

3 指纹识别算法实现

3.1 指纹识别算法流程

在这里插入图片描述

3.2 指纹图像预处理

  • 1.图像归一化
  • 2.图像分割
  • 3.图像二值化
  • 4.细化

几个步骤 当然有一些算法为了追求极致,中间还利用了增强、多重滤波等方式,但最根本的目的都是为了在细化之后保留指纹信息并且方便后续处理。

预处理之后是特征点的提取,也就是找到指纹图像当中有价值,具有唯一性和不变性的信息。主要特征点有端点、分叉点几类,在提取部分除了简单的遍历检索确认之外,还有比较重要的一步是伪特征点的去除,主要是针对图像不清晰、不完整导致的断点和边缘端点等。

最后一步是特征点的匹配,将指纹库中的指纹信息与提取的目标图像特征点进行对比。主流算法是以指纹中心点为依据,根据特征点所在的角度及距离,确认其所在位置,根据匹配度计算是否是同一手指的指纹。

3.3 指纹图像目标提取

指纹图像目标提取主要是将指纹图片中提取出来,也叫做指纹图像分割。

图片的前景通过观察可知是由条状或者圆形的一些组成,而底图其他部分只是一个均匀的底色而已。

我们使用非常简单的手段,基于局部梯度就可以很容易实现我们的目标。

方差梯度法提取指纹:

指纹图像通常由前景区域(包含有指纹的脊线和谷线)和背景区域这两部分组成。一般来说,在指纹图像的前景区域中,指纹的脊线和谷线的灰度差是较大的,因而其灰度统计特性局部灰度方差很大;而在指纹图像的背景区域中,两者的方差是很小的。基于这一特性,可以利用指纹图像的局部方差来进行分割。因此,这种方法也被称为方差梯度法。

的灰度平均值 M和方差 Var计算方法:
在这里插入图片描述

提取前的指纹图像:

在这里插入图片描述

提取后的指纹图像:
在这里插入图片描述

可以看到,学长做的还有些噪点,但是也很好解决,做一次形态学操作即可:

在这里插入图片描述

这样噪点就去除了。

3.4 指纹图像增强

在这里插入图片描述

3.5 指纹特征提取

人体指纹的特征可以反映在给定的人类群体里来自不同手指的指纹之间相似的程度。

指纹的特征信息很多,所有的这些指纹特征信息构成了庞大的指纹特征集合。

指纹的细节特征主要指的是纹线端点(RidgeEnding)和纹线分叉点(RidgeBifurcation)。

纹线端点指的是纹线突然结束的位置,而纹线分叉点则是指纹线一分为二的位置。

大量的统计结果表明,使用这两类特征点就足以描述指纹的唯一性。

在这里插入图片描述

Minutia Cylinder-Code (MCC) ,该算法是非常著名的指纹特征识提取算法,

第一次发表在:IEEE tPAMI

Minutia Cylinder-Code: a new representation and matching technique for
fingerprint recognition", IEEE tPAMI 2010

  • MCC提出了一种基于三维数据结构的圆柱编码算法,其从细节的距离和角度出发,构造了圆柱编码
  • 为一种多级的指纹匹配方法,其不仅使用了细节点特征也使用了方向场等特征
  • 特征视为一种局部结构,也是3D结构

在这里插入图片描述

部分实现代码:

# Compute the cell coordinates of a generic local structure# 计算
​    mcc_radius = 70
​    mcc_size = 16
​    g = 2 * mcc_radius / mcc_size
x = np.arange(mcc_size)*g - (mcc_size/2)*g + g/2
y = x[..., np.newaxis]
iy, ix = np.nonzero(x**2 + y**2 <= mcc_radius**2)
ref_cell_coords = np.column_stack((x[ix], x[iy]))mcc_sigma_s = 7.0mcc_tau_psi = 400.0mcc_mu_psi = 1e-2def Gs(t_sqr):"""Gaussian function with zero mean and mcc_sigma_s standard deviation, see eq. (7) in MCC paper"""return np.exp(-0.5 * t_sqr / (mcc_sigma_s**2)) / (math.tau**0.5 * mcc_sigma_s)def Psi(v):"""Sigmoid function that limits the contribution of dense minutiae clusters, see eq. (4)-(5) in MCC paper"""return 1. / (1. + np.exp(-mcc_tau_psi * (v - mcc_mu_psi)))​    
​    
​    
​    # n: number of minutiae# c: number of cells in a local structure
​    xyd = np.array([(x,y,d) for x,y,_,d in valid_minutiae]) # matrix with all minutiae coordinates and directions (n x 3)# rot: n x 2 x 2 (rotation matrix for each minutia)d_cos, d_sin = np.cos(xyd[:,2]).reshape((-1,1,1)), np.sin(xyd[:,2]).reshape((-1,1,1))
rot = np.block([[d_cos, d_sin], [-d_sin, d_cos]])# rot@ref_cell_coords.T : n x 2 x c# xy : n x 2xy = xyd[:,:2]# cell_coords: n x c x 2 (cell coordinates for each local structure)cell_coords = np.transpose(rot@ref_cell_coords.T + xy[:,:,np.newaxis],[0,2,1])# cell_coords[:,:,np.newaxis,:]      :  n x c  x 1 x 2# xy                                 : (1 x 1) x n x 2# cell_coords[:,:,np.newaxis,:] - xy :  n x c  x n x 2# dists: n x c x n (for each cell of each local structure, the distance from all minutiae)dists = np.sum((cell_coords[:,:,np.newaxis,:] - xy)**2, -1)# cs : n x c x n (the spatial contribution of each minutia to each cell of each local structure)cs = Gs(dists)
diag_indices = np.arange(cs.shape[0])
cs[diag_indices,:,diag_indices] = 0 # remove the contribution of each minutia to its own cells# local_structures : n x c (cell values for each local structure)local_structures = Psi(np.sum(cs, -1))

3.6 指纹识别结果

提取特征后,剩下的任务就是对特征进行分类了,可以使用的算法就很多了,比如svm,决策树、神经网络,都可以

在这里插入图片描述

4 整体效果

在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/768279.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ETL数据倾斜与资源优化

1.数据倾斜实例 数据倾斜在MapReduce编程模型中比较常见&#xff0c;由于key值分布不均&#xff0c;大量的相同key被存储分配到一个分区里&#xff0c;出现只有少量的机器在计算&#xff0c;其他机器等待的情况。主要分为JOIN数据倾斜和GROUP BY数据倾斜。 1.1GROUP BY数据倾…

【短接笔记本或者台式机的CMOS针脚解决电脑开机无法启动BIOS无法进入问题】

为什么要执行短接笔记本或者台式机的CMOS针脚操作&#xff1f; 问题&#xff1a;可以解决如下图所示&#xff0c;技嘉小雕主板开机时按delete键无法进入BIOS主板界面&#xff0c;长时间等待之后依然无法进入BIOS主板界面&#xff0c;则判定为主板问题。此时短接CMOS针脚可清空…

nodejs+vue高校工作室管理系统python-flask-django-php

系统根据现有的管理模块进行开发和扩展&#xff0c;采用面向对象的开发的思想和结构化的开发方法对高校工作室管理的现状进行系统调查。采用结构化的分析设计&#xff0c;该方法要求结合一定的图表&#xff0c;在模块化的基础上进行系统的开发工作。在设计中采用“自下而上”的…

python(django(自动化))之流程接口展示功能前端开发

1、创建模板代码如下&#xff1a; <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><title>测试平台</title> </head> <body role"document"> <nav class "navbar n…

Redis - list 列表

前言 列表类似于 Java 中的数组或者顺序表&#xff0c;在 Redis 中&#xff0c;可以对列表两端插⼊&#xff08;push&#xff09;和弹出&#xff08;pop&#xff09;&#xff0c;还可以获取指定范围的元素列表、 获取指定索引下标的元素等。列表是⼀种⽐较灵活的数据结构&#…

(一)基于IDEA的JAVA基础7

关系运算符 运算符 含义 范例 结果 等于 12 false &#xff01; 不等于 1&#xff01;2 true > 大于 1>2 false < 小于 …

微服务(基础篇-001-介绍、Eureka)

目录 认识微服务&#xff08;1&#xff09; 服务架构演变&#xff08;1.1&#xff09; 单体架构&#xff08;1.1.1&#xff09; 分布式架构&#xff08;1.1.2&#xff09; 微服务&#xff08;1.1.3&#xff09; 微服务结构 微服务技术对比 企业需求 SpringCloud(1.2) …

思科网络中DHCP中继的配置

一、什么是DHCP中继&#xff1f;DHCP中继有什么用? &#xff08;1&#xff09;DHCP中继是指一种网络设备或服务&#xff0c;用于在不同的子网之间传递DHCP&#xff08;动态主机配置协议&#xff09;消息。DHCP中继的作用是帮助客户端设备获取IP地址和其他网络配置信息&#x…

jvm底层

逐步细化 静态链接&#xff1a;静态方法(符号引用)替换为内存指针或者句柄直接引用) 动态链接&#xff1a;程序期间将符号引用替换为直接引用 对象头&#xff1a; 指针压缩&#xff1a; -XX:UseCompressedOops 开启指针压缩 减少内存消耗&#xff1b;大指针在主内存 缓存间移…

6.3 BP神经网络

在多层感知器被引入的同时&#xff0c;也引入了一个新的问题&#xff1a;由于隐藏层的预期输出并没有在训练样例中给出&#xff0c;隐藏层结点的误差无法像单层感知器那样直接计算得到。 为了解决这个问题&#xff0c;反向传播&#xff08;BP&#xff09;算法被引入&#xff0…

centos glibc 升级导致系统崩溃

centos 7.9默认的glibc为2.17&#xff0c;因为要安装一些软件&#xff0c;需要升级到glibc 2.18&#xff0c;而从源码进行编译和安装&#xff0c;安装失败&#xff0c;导致系统崩溃。 系统崩溃首先想到的是利用启动盘进行救援&#xff0c;而利用centos 7.9的启动盘始终无法挂载…

【PHP + 代码审计】数组排序算法

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【Java、PHP】 【VulnHub靶场复现】【面试分析】 &#x1f389;点赞➕评论➕收…

银行监管报送系统介绍(五):金融统计数据大集中自动化报送系统——PBOC Report

人民银行金融统计数据大集中自动化报送系统&#xff08;简称PBOC Report&#xff09;&#xff0c;是基于现代计算机网络技术应用基础上&#xff0c;由人行总行设置金融统计数据服务器&#xff0c;建立的一个全国统一的金融统计数据库。 人行针对各银行存贷款、中间业务、网点人…

信号处理--基于FBCSP滤波方法的运动想象分类

目录 理论 工具 方法 代码获取 理论 通用空间模式 (CSP) 算法可以用来有效构建最佳空间滤波器区分&#xff0c;然后实现运动想象的数据中的脑电信号的区分。然而&#xff0c;空间滤波器性能的好坏主要取决于其工作频带。如果脑电信号没有经过滤波或者滤波的频带范围不合适…

FPGA使用XADC测量外部模拟输入电压

一、XADC简介 1.1、特性 Xilinx系列的FPGA中都包含了一个内置的XADC&#xff0c;我们可以通过这个XADC进行一些精度不高的外部模拟信号采样以及FPGA片内传感器信号采集。XADC的分辨率为12位&#xff0c;采样率为1MSPS。 1.2、结构框图 两片XADC&#xff0c;ADC A可用于片内…

SpringJPA 做分页条件查询

前言: 相信小伙伴们的项目很多都用到SpringJPA框架的吧,对于单表的增删改查利用jpa是很方便的,但是对于条件查询并且分页 是不是很多小伙伴不经常写到. 今天我整理了一下在这里分享一下. 话不多说直接上代码: Controller: RestController public class ProductInstanceContr…

Apache HTTP服务器(Linux离线编译安装)

Apache HTTP服务器&#xff08;Linux离线编译安装&#xff09; Apache是普通服务器&#xff0c;本身只支持html即普通网页。可以通过插件支持PHP,还可以与Tomcat连通(单向Apache连接Tomcat,就是说通过Apache可以访问Tomcat资源。反之不然)。 Apache和Tomcat都可以做为独立的w…

8个常见的数据可视化错误以及如何避免它们

在当今以数据驱动为主导的世界里&#xff0c;清晰且具有洞察力的数据可视化至关重要。然而&#xff0c;在创建数据可视化时很容易犯错误&#xff0c;这可能导致对数据的错误解读。本文将探讨一些常见的糟糕数据可视化示例&#xff0c;并提供如何避免这些错误的建议。 本文总结了…

如何使用PHP和RabbitMQ实现消息队列?

前言 今天我们来做个小试验&#xff0c;用PHP和RabbitMQ实现消息队列功能。 前期准备&#xff0c;需要安装好docker、docker-compose的运行环境。 如何使用docker部署php服务_php如何使用docker发布-CSDN博客 一、安装RabbitMQ 1、创建相关目录&#xff0c;执行如下命令。…

计算机网络⑦ —— 网络层协议

1. ARP协议 在传输⼀个 IP 数据报的时候&#xff0c;确定了源 IP 地址和⽬标 IP 地址后&#xff0c;就会通过主机路由表确定 IP 数据包下⼀跳。然⽽&#xff0c;⽹络层的下⼀层是数据链路层&#xff0c;所以我们还要知道下⼀跳的 MAC 地址。由于主机的路由表中可以找到下⼀跳的…