Tensorflow 2.0 常见函数用法(一)

文章目录

  • 0. 基础用法
  • 1. tf.cast
  • 2. tf.keras.layers.Dense
  • 3. tf.variable_scope
  • 4. tf.squeeze
  • 5. tf.math.multiply


0. 基础用法

Tensorflow 的用法不定期更新遇到的一些用法,之前已经包含了基础用法参考这里 ,具体包含如下图的方法:
在这里插入图片描述
本文介绍其他常见的方法。

1. tf.cast

张量类型强制转换

官方用法:

tf.cast(x, dtype, name=None
)

示例:

x = tf.constant([1.8, 2.2], dtype=tf.float32)
print(tf.cast(x, tf.int32))# 输出
tf.Tensor([1 2], shape=(2,), dtype=int32)

2. tf.keras.layers.Dense

构建一个全连接层

在1.0中是 tf.layers.dense ,2.0中可以用下面方法兼容:

import tensorflow.compat.v1 as tf
tf.layers.dense(xxx)

官方用法:

tf.keras.layers.Dense(units,activation=None,use_bias=True,kernel_initializer='glorot_uniform',bias_initializer='zeros',kernel_regularizer=None,bias_regularizer=None,activity_regularizer=None,kernel_constraint=None,bias_constraint=None,**kwargs
)

3. tf.variable_scope

这是 v1 版本的用法,用于管理变量

官方用法:

tf.compat.v1.variable_scope(name_or_scope,default_name=None,values=None,initializer=None,regularizer=None,caching_device=None,partitioner=None,custom_getter=None,reuse=None,dtype=None,use_resource=None,constraint=None,auxiliary_name_scope=True
)

示例:

import tensorflow as tf
with tf.variable_scope("one"):o=tf.get_variable("f",[1])
with tf.variable_scope("two"):o1=tf.get_variable("f",[1])# 抛错,因为变量的作用范围不一样
# 一个作用域是one/f,一个作用域是two/f
assert o == o1

4. tf.squeeze

从张量的形状中移除大小为1的维度。该函数返回一个张量,这个张量是将原始input中所有维度为1的那些维都删掉的结果。
axis 可以用来指定要删掉的为1的维度,此处要注意指定的维度必须确保其是1,否则会报错。

官方用法:

tf.squeeze(input, axis=None, name=None
)

示例:

# 注意,a的shape是1*6,即存在一个大小为1的维度
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[1, 6])
print(a)
b = tf.squeeze(a, [0]) # 删除第0个维度为1的
# b = tf.squeeze(a) 的结果是一样的
print(b)# 输出
tf.Tensor([[1 2 3 4 5 6]], shape=(1, 6), dtype=int32)
tf.Tensor([1 2 3 4 5 6], shape=(6,), dtype=int32)
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[6, 1])
print(a)
b = tf.squeeze(a, [1])
print(b)# 输出
tf.Tensor(
[[1][2][3][4][5][6]], shape=(6, 1), dtype=int32)
tf.Tensor([1 2 3 4 5 6], shape=(6,), dtype=int32)
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
print(a)
b = tf.squeeze(a) # 如果不存在大小为1的维度,那么保持不变
print(b)# 输出
tf.Tensor(
[[1 2 3][4 5 6]], shape=(2, 3), dtype=int32)
tf.Tensor(
[[1 2 3][4 5 6]], shape=(2, 3), dtype=int32)

5. tf.math.multiply

元素相乘

在 1.0 中是 tf.multiply
官方用法:

tf.math.multiply(x, y, name=None
)

示例:

a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
print(tf.multiply(a, 2))
print(tf.multiply(a, a))# 输出
tf.Tensor(
[[ 2  4  6][ 8 10 12]], shape=(2, 3), dtype=int32)tf.Tensor(
[[ 1  4  9][16 25 36]], shape=(2, 3), dtype=int32)
x = tf.ones([1, 2]);
y = tf.ones([2, 1]);
print(x * y)  # Taking advantage of operator overriding
print(tf.multiply(x, y))# 输出,如果维度不一致,会尝试匹配维度
tf.Tensor(
[[1. 1.][1. 1.]], shape=(2, 2), dtype=float32)
tf.Tensor(
[[1. 1.][1. 1.]], shape=(2, 2), dtype=float32)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/765046.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

dbscan算法实现鸢尾花聚类(python实现)

DBscan算法原理 : dbscan算法-CSDN博客 法一(调库) : 直接调库 : import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.cluster import DBSCAN from sklearn.decomposition import PCA from sklearn.discriminant_analysis …

leetcode 225.用队列实现栈 JAVA

题目 思路 1.一种是用双端队列(Deque),直接就可以调用很多现成的方法,非常方便。 2.另一种是用普通的队列(Queue),要实现栈的先入后出,可以将最后一个元素的前面所有元素出队,然后…

【NLP11-迁移学习】

1、了解迁移学习中的有关概念 1.1、预训练模型(pretrained model) 一般情况下预训练模型都是大型模型,具备复杂的网络结构,众多的参数量,以及在足够大的数据集下进行训练而产生的模型。在NLP领域,预训练模型往往是语…

数据库(黑马)

数据库 use test2; show tables; create table student2(id int,name varchar(10),sex varchar(10) ); ALTER TABLE student ADD sex int; INSERT INTO student (sex) VALUES (1); insert into student(id) values(1),(2),(3); insert into student2 values(4,呆呆1,19),(5,…

Python 的闭包,你知道多少? 快来测测吧

在Python中,闭包是一种强大且神奇的概念,它让函数不仅可以执行操作,还可以携带状态和环境。通过闭包,我们可以创建灵活而高效的函数,实现更加复杂的逻辑和设计模式。本文将深入探讨Python中闭包的原理和应用&#xff0…

【Flask】Flask项目结构初识

1.前提准备 Python版本 # python 3.8.0 # 查看Python版本 python --version 安装第三方 Flask pip install flask # 如果安装失败,可以使用 -i,指定使用国内镜像源 # 清华镜像源:https://pypi.tuna.tsinghua.edu.cn/simple/ 检查 Flask 是…

SCI一区 | Matlab实现PSO-TCN-BiGRU-Attention粒子群算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现PSO-TCN-BiGRU-Attention粒子群算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测 目录 SCI一区 | Matlab实现PSO-TCN-BiGRU-Attention粒子群算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测预测效果基本介绍模型描述…

Qt如何直接处理系统事件(比如鼠标事件),而不是post事件

#include <QtGui/5.15.2/QtGui/qpa/qwindowsysteminterface.h> // 方便调试事件 QWindowSystemInterface::setSynchronousWindowSystemEvents(true); 直接再 qWindowsWndProc函数中处理 通常情况: 事件被放到一个队列中

基于springboot+vue+Mysql的垃圾分类网站

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;…

JavaScript高级(十)----JavaScript中的类【重述原型链】!

类 在JavaScript其实本来没有类的概念&#xff0c;哪怕是ES5以后的class&#xff0c;严格意义上来说也只是构造函数的语法糖&#xff0c;之所以喜欢称之为类&#xff0c;因为JavaScript也可以面向对象开发。 类的声明 class Person {}function Person1() {}// 上面两种写法本…

Milvus 向量数据库介绍及使用

一、Milvus 介绍及安装 Milvus 于 2019 年创建&#xff0c;其目标只有一个&#xff1a;存储、索引和管理由深度神经网络和其他机器学习 (ML) 模型生成的大量嵌入向量。它具备高可用、高性能、易拓展的特点&#xff0c;用于海量向量数据的实时召回。 作为专门为处理输入向量查…

Linux:权限的概念与理解

目录 1. Linux权限的概念 2. Linux权限管理 01.文件访问者的分类 02.文件类型和访问权限 03.文件权限值的表示方法 04. 文件访问权限的相关设置方法 3. 使用 sudo分配权限 4. 目录的权限 ---------- 权限 用户角色(具体的人) 文件权限属性 ---------- 1. Linux权限的…

代码随想录--排序算法

912.排序数组 快速排序 思路&#xff1a; 1. 设置一个pivot2. 将小于nums[pivot]的值 放在左边3. 将 大于nums[pivot]的值 放在 右边4. 递归调用注意&#xff1a;必须先比较nums[high] 与pivot 代码&#xff1a; class Solution {int partition(vector<int>&nu…

无人机采集图像的相关知识

1.飞行任务规划 一般使用飞行任务规划软件进行飞行任务的设计&#xff0c;软件可以自动计算相机覆盖和图像重叠情况。比如ArduPilot (ArduPilot - Versatile, Trusted, Open) 和UgCS (http://www.ugcs.com)是两个飞行任务规划软件&#xff0c;可以适用大多数无人机系统。 2.图…

每日shell脚本之自动配置Prometheus.yml并支持选择监控的节点数量、输入自定义IP和端口设置

每日shell脚本之自动配置Prometheus.yml并支持选择监控的节点数量、输入自定义IP和端口设置 #!/bin/bash# 获取用户输入的节点数量 read -p "请输入要监控的节点数量&#xff1a; " node_count# 生成Prometheus.yml配置文件 cat << EOF > Prometheus.yml g…

Vue 中给 data 中的对象属性添加一个新的属性时会发生什么?如何解决?

<template> <div><ul><li v-for"value in obj" :key"value"> {{value}} </li> </ul> <button click"addObjB">添加 obj.b</button> </div> </template><script>export defau…

QT作业。。

1.使用手动连接&#xff0c;将登录框中的取消按钮使用t4版本的连接到自定义的槽函数中&#xff0c;在自定义的槽函数中调用关闭函数将登录按钮使用t5版本的连接到自定义的槽函数中&#xff0c;在槽函数中判断u界面上输入的账号是否为"admin"&#xff0c;密码是否为&q…

【计算机视觉】Gaussian Splatting源码解读补充(一)

本文旨在补充gwpscut创作的博文学习笔记之——3D Gaussian Splatting源码解读。 Gaussian Splatting Github地址&#xff1a;https://github.com/graphdeco-inria/gaussian-splatting 论文地址&#xff1a;https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gauss…

mac 用electron-builder打包,如何切换到notarytool

背景&#xff1a;altool已经被遗弃了&#xff0c;我们必须要使用notarytool进行打包,如何从altool切换到notarytool 在打包的配置中afterSign执行的js中 加入teamId和tool teamId在你的开发者账号中可以获取到

二、SpringBoot3 配置文件

本章概要 统一配置管理概述属性配置文件使用YAML 配置文件使用批量配置文件注入多环境配置和使用 2.1 统一配置管理概述 SpringBoot工程下&#xff0c;进行统一的配置管理&#xff0c;你想设置的任何参数&#xff08;端口号、项目根路径、数据库连接信息等等)都集中到一个固定…