微服务高级篇(三):分布式缓存+Redis集群

文章目录

  • 一、单点Redis的问题及解决方案
  • 二、Redis持久化
    • 2.1 单机安装Redis
    • 2.2 RDB持久化
    • 2.3 AOF持久化
    • 2.4 RDB和AOF对比
  • 三、Redis主从
    • 3.1 搭建Redis主从架构
      • 3.1.1 集群结构
      • 3.1.2 准备实例和配置
      • 3.1.3 启动
      • 3.1.4 开启主从关系
      • 3.1.5 测试
    • 3.2 数据同步
      • 3.2.1 全量同步【建立连接时】
      • 3.2.2 增量同步【slave从节点重启后】
      • 3.2.3 数据同步的优化
      • 3.2.4 总结
  • 四、Redis哨兵【Sentinel实现哨兵,故障转移】
    • 4.1 哨兵的作用和原理
    • 4.2 搭建哨兵集群
      • 4.2.1 集群结构
      • 4.2.2 准备实例和配置
      • 4.2.3 启动
      • 4.2.4 测试
    • 4.3 RedisTemplate的哨兵模式
  • 五、Redis分片集群
    • 5.1 搭建分片集群
      • 5.1.1 集群结构
      • 5.1.2 准备实例和配置
      • 5.1.3 启动
      • 5.1.4 创建集群
      • 5.1.5 测试
    • 5.2 散列插槽
    • 5.3 集群伸缩【添加、删除Redis节点】
      • 5.3.1 添加节点
      • 5.3.2 删除节点
    • 5.4 故障转移
      • 5.4.1 自动故障转移
      • 5.4.2 手动故障转移
    • 5.5 RedisTemplate访问分片集群


一、单点Redis的问题及解决方案

数据丢失问题:Redis是内存存储,服务重启可能会丢失数据
并发能力问题:单节点Redis并发能力虽然不错,但也无法满足如618这样的高并发场景
故障恢复问题:如果Redis宕机,则服务不可用,需要一种自动的故障恢复手段
存储能力问题:Redis基于内存,单节点能存储的数据量难以满足海量数据需求

解决方案:
在这里插入图片描述

二、Redis持久化

2.1 单机安装Redis

首先需要安装Redis所需要的依赖:

yum install -y gcc tcl

然后将课前资料提供的Redis安装包上传到虚拟机的任意目录:

例如,我放到了/tmp目录:

解压缩:

tar -xvf redis-6.2.4.tar.gz

解压后:

进入redis目录:

cd redis-6.2.4

运行编译命令:

make && make install

如果没有出错,应该就安装成功了。

然后修改redis.conf文件中的一些配置:

# 绑定地址,默认是127.0.0.1,会导致只能在本地访问。修改为0.0.0.0则可以在任意IP访问
bind 0.0.0.0
# 数据库数量,设置为1
databases 1

启动Redis:

redis-server redis.conf

停止redis服务:

redis-cli shutdown

测试服务:

在这里插入图片描述

当停止服务时,redis会将数据保存在该目录下,再次启动服务时会恢复数据。

在这里插入图片描述

Redis默认持久化,但只是在停机时会保存数据,但我们需要的是每隔一段时间就保存一下数据,以下会采用两种持久化方案。

2.2 RDB持久化

在这里插入图片描述

bgsave的流程

在这里插入图片描述

RDB持久化默认会在停机执行一次,也可以在redis.conf文件中设置保存时机,如下:

在这里插入图片描述

案例:在redis.conf中设置每5秒修改一次就保存数据,设置保存的文件名为test.rdb

  1. 修改配置文件
save 5 1
dbfilename  test.rdb
  1. 添加一条数据
    在这里插入图片描述
  2. 结果显示
    在这里插入图片描述

在这里插入图片描述

2.3 AOF持久化

在这里插入图片描述

使用方法:
在这里插入图片描述
使用AOF可以禁用RDB,方法是:修改配置文件

save ""

bgrewriteaof命令:命令压缩
在这里插入图片描述

2.4 RDB和AOF对比

在这里插入图片描述

三、Redis主从

3.1 搭建Redis主从架构

3.1.1 集群结构

我们搭建的主从集群结构如图:

在这里插入图片描述

共包含三个节点,一个主节点,两个从节点。

这里我们会在同一台虚拟机中开启3个redis实例,模拟主从集群,信息如下:

IPPORT角色
192.168.150.1017001master
192.168.150.1017002slave
192.168.150.1017003slave

3.1.2 准备实例和配置

注意服务器要打开7001 7002 7003 端口

要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。

1)创建目录

我们创建三个文件夹,名字分别叫7001、7002、7003:

# 进入/tmp目录
cd /tmp
# 创建目录
mkdir 7001 7002 7003

如图:

2)恢复原始配置

修改redis-6.2.4/redis.conf文件,将其中的持久化模式改为默认的RDB模式,AOF保持关闭状态。

# 开启RDB
# save ""
save 3600 1
save 300 100
save 60 10000# 关闭AOF
appendonly no

3)拷贝配置文件到每个实例目录

然后将redis-6.2.4/redis.conf文件拷贝到三个目录中(在/tmp目录执行下列命令):

# 方式一:逐个拷贝
cp redis-6.2.4/redis.conf 7001
cp redis-6.2.4/redis.conf 7002
cp redis-6.2.4/redis.conf 7003
# 方式二:管道组合命令,一键拷贝
echo 7001 7002 7003 | xargs -t -n 1 cp redis-6.2.4/redis.conf

4)修改每个实例的端口、工作目录

修改每个文件夹内的配置文件,将端口分别修改为7001、7002、7003,将rdb文件保存位置都修改为自己所在目录(在/tmp目录执行下列命令):

sed -i -e 's/6379/7001/g' -e 's/dir .\//dir \/tmp\/7001\//g' 7001/redis.conf
sed -i -e 's/6379/7002/g' -e 's/dir .\//dir \/tmp\/7002\//g' 7002/redis.conf
sed -i -e 's/6379/7003/g' -e 's/dir .\//dir \/tmp\/7003\//g' 7003/redis.conf

5)修改每个实例的声明IP

虚拟机本身有多个IP,为了避免将来混乱,我们需要在redis.conf文件中指定每一个实例的绑定ip信息,格式如下:【注意修改IP】

# redis实例的声明 IP
replica-announce-ip 192.168.150.101

每个目录都要改,我们一键完成修改(在/tmp目录执行下列命令):

# 逐一执行
sed -i '1a replica-announce-ip 192.168.150.101' 7001/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7002/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7003/redis.conf# 或者一键修改
printf '%s\n' 7001 7002 7003 | xargs -I{} -t sed -i '1a replica-announce-ip 192.168.150.101' {}/redis.conf

3.1.3 启动

为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:

# 第1个
redis-server 7001/redis.conf
# 第2个
redis-server 7002/redis.conf
# 第3个
redis-server 7003/redis.conf

启动后:

在这里插入图片描述

如果要一键停止,可以运行下面命令:

printf '%s\n' 7001 7002 7003 | xargs -I{} -t redis-cli -p {} shutdown

3.1.4 开启主从关系

现在三个实例还没有任何关系,要配置主从可以使用replicaof 或者slaveof(5.0以前)命令。

有临时和永久两种模式:

  • 修改配置文件(永久生效)

    • 在redis.conf中添加一行配置:slaveof <masterip> <masterport>
  • 使用redis-cli客户端连接到redis服务,执行slaveof命令(重启后失效):

    slaveof <masterip> <masterport>
    

注意:在5.0以后新增命令replicaof,与salveof效果一致。

这里我们为了演示方便,使用方式二。

通过redis-cli命令连接7002,执行下面命令:【注意修改IP】

# 连接 7002
redis-cli -p 7002
# 执行slaveof
slaveof 192.168.150.101 7001

通过redis-cli命令连接7003,执行下面命令:【注意修改IP】

# 连接 7003
redis-cli -p 7003
# 执行slaveof
slaveof 192.168.150.101 7001

然后连接 7001节点,查看集群状态:

# 连接 7001
redis-cli -p 7001
# 查看状态
info replication

结果:

在这里插入图片描述
在这里插入图片描述

3.1.5 测试

执行下列操作以测试:

  • 利用redis-cli连接7001,执行set num 123

  • 利用redis-cli连接7002,执行get num,再执行set num 666

  • 利用redis-cli连接7003,执行get num,再执行set num 888

可以发现,只有在7001这个master节点上可以执行写操作,7002和7003这两个slave节点只能执行读操作。

3.2 数据同步

3.2.1 全量同步【建立连接时】

在这里插入图片描述

master如何判断slave是不是来做数据同步?首先要了解以下两个概念:

在这里插入图片描述
过程如下:

  1. slave向master发送偏移量
  2. master判断请求的repid是否一致
  3. 不一致表示二者第一次连接,然后master将自己的repid和offset发送给slave

在这里插入图片描述

3.2.2 增量同步【slave从节点重启后】

在这里插入图片描述

3.2.3 数据同步的优化

在这里插入图片描述

3.2.4 总结

在这里插入图片描述

四、Redis哨兵【Sentinel实现哨兵,故障转移】

4.1 哨兵的作用和原理

slave节点宕机恢复后可以找master节点同步数据那master节点宕机怎么办?

在这里插入图片描述

一、服务状态监控

Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:

  1. 主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线。
  2. 客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。

二、选举master

一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:

  1. 首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-miliseconds*10)则会排除该slave节点
  2. 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举
  3. 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高
  4. 最后是判断slave节点的运行id大小,越小优先级越高。

三、如何实现故障转移?

在这里插入图片描述

4.2 搭建哨兵集群

4.2.1 集群结构

这里我们搭建一个三节点形成的Sentinel集群,来监管之前的Redis主从集群。如图:

在这里插入图片描述

三个sentinel实例信息如下:

节点IPPORT
s1192.168.150.10127001
s2192.168.150.10127002
s3192.168.150.10127003

4.2.2 准备实例和配置

注意服务器要打开7001 7002 7003 27001 27002 27003端口

要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。

我们创建三个文件夹,名字分别叫s1、s2、s3:

# 进入/tmp目录
cd /tmp
# 创建目录
mkdir s1 s2 s3

如图:

然后我们在s1目录创建一个sentinel.conf文件,命令:vi s1/sentinel.conf,添加下面的内容:【注意修改IP】

port 27001
sentinel announce-ip 192.168.150.101
sentinel monitor mymaster 192.168.150.101 7001 2
sentinel down-after-milliseconds mymaster 5000
sentinel failover-timeout mymaster 60000
dir "/tmp/s1"

解读:

  • port 27001:是当前sentinel实例的端口
  • sentinel monitor mymaster 192.168.150.101 7001 2:指定主节点信息
    • mymaster:主节点名称,自定义,任意写
    • 192.168.150.101 7001:主节点的ip和端口
    • 2:选举master时的quorum值

然后将s1/sentinel.conf文件拷贝到s2、s3两个目录中(在/tmp目录执行下列命令):

# 方式一:逐个拷贝
cp s1/sentinel.conf s2
cp s1/sentinel.conf s3
# 方式二:管道组合命令,一键拷贝
echo s2 s3 | xargs -t -n 1 cp s1/sentinel.conf

修改s2、s3两个文件夹内的配置文件,将端口分别修改为27002、27003,工作目录修改成s2、s3:

sed -i -e 's/27001/27002/g' -e 's/s1/s2/g' s2/sentinel.conf
sed -i -e 's/27001/27003/g' -e 's/s1/s3/g' s3/sentinel.conf

4.2.3 启动

为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:

# 第1个
redis-sentinel s1/sentinel.conf
# 第2个
redis-sentinel s2/sentinel.conf
# 第3个
redis-sentinel s3/sentinel.conf# 一键停止三个redis-sentinel
printf '%s\n' 27001 27002 27003 | xargs -I{} -t redis-cli -p {} shutdown# 也可以一个一个的停止redis-sentinel
redis-cli -p 27001 shutdown
redis-cli -p 27002 shutdown
redis-cli -p 27003 shutdown

启动后:

4.2.4 测试

尝试让master节点7001宕机,查看sentinel日志:

查看27001的日志:

在这里插入图片描述

4.3 RedisTemplate的哨兵模式

  1. 在pom文件中引入redis依赖
        <!--redis依赖--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency>
  1. 在yml文件中配置指定sentinel【哨兵】相关信息
spring:redis:sentinel:master: mymaster # 指定master名称nodes: # 指定redis-sentinel集群【哨兵】名称- 39.107.236.163:27001- 39.107.236.163:27002- 39.107.236.163:27003
  1. 配置主从分离
    在这里插入图片描述

  2. 启动服务测试,插入一条数据
    在这里插入图片描述
    在这里插入图片描述

五、Redis分片集群

在这里插入图片描述

5.1 搭建分片集群

5.1.1 集群结构

分片集群需要的节点数量较多,这里我们搭建一个最小的分片集群,包含3个master节点,每个master包含一个slave节点,结构如下:

在这里插入图片描述

这里我们会在同一台虚拟机中开启6个redis实例,模拟分片集群,信息如下:

IPPORT角色
192.168.150.1017001master
192.168.150.1017002master
192.168.150.1017003master
192.168.150.1018001slave
192.168.150.1018002slave
192.168.150.1018003slave

5.1.2 准备实例和配置

注意服务器要打开7001 7002 7003 8001 8002 8003 27001 27002 27003 28001 28002 28003 端口

首先关闭之前的主从redis和哨兵

# 关闭哨兵
printf '%s\n' 27001 27002 27003 | xar -t redis-cli -p {} shutdown
# 关闭redis主从节点
printf '%s\n' 7001 7002 7003 | xargs  redis-cli -p {} shutdown

删除之前的7001、7002、7003这几个目录,重新创建出7001、7002、7003、8001、8002、8003目录:

# 进入/tmp目录
cd /tmp
# 删除旧的,避免配置干扰
rm -rf 7001 7002 7003
# 创建目录
mkdir 7001 7002 7003 8001 8002 8003

在/tmp下准备一个新的redis.conf文件vi redis.conf,内容如下:

port 6379
# 开启集群功能
cluster-enabled yes
# 集群的配置文件名称,不需要我们创建,由redis自己维护
cluster-config-file /tmp/6379/nodes.conf
# 节点心跳失败的超时时间
cluster-node-timeout 5000
# 持久化文件存放目录
dir /tmp/6379
# 绑定地址
bind 0.0.0.0
# 让redis后台运行
daemonize yes
# 注册的实例ip
replica-announce-ip 192.168.150.101
# 保护模式
protected-mode no
# 数据库数量
databases 1
# 日志
logfile /tmp/6379/run.log

将这个文件拷贝到每个目录下:

# 进入/tmp目录
cd /tmp
# 执行拷贝
echo 7001 7002 7003 8001 8002 8003 | xargs -t -n 1 cp redis.conf

修改每个目录下的redis.conf,将其中的6379修改为与所在目录一致:

# 进入/tmp目录
cd /tmp
# 修改配置文件
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t sed -i 's/6379/{}/g' {}/redis.conf

5.1.3 启动

一定要注意:如果是使用云服务器,一定要打开 17007 17002 17003 18001 18002 18003 端口

因为已经配置了后台启动模式,所以可以直接启动服务:

# 进入/tmp目录
cd /tmp
# 一键启动所有服务
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-server {}/redis.conf

通过ps查看状态:

ps -ef | grep redis

发现服务都已经正常启动:

在这里插入图片描述

如果要关闭所有进程,可以执行命令:

ps -ef | grep redis | awk '{print $2}' | xargs kill

或者(推荐这种方式):

printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-cli -p {} shutdown

或者(还不行的话):

kill -9 上面截图root后面那一串数字

5.1.4 创建集群

虽然服务启动了,但是目前每个服务之间都是独立的,没有任何关联。

我们需要执行命令来创建集群,在Redis5.0之前创建集群比较麻烦,5.0之后集群管理命令都集成到了redis-cli中。

1)Redis5.0之前

Redis5.0之前集群命令都是用redis安装包下的src/redis-trib.rb来实现的。因为redis-trib.rb是有ruby语言编写的所以需要安装ruby环境。

# 安装依赖
yum -y install zlib ruby rubygems
gem install redis

然后通过命令来管理集群:

# 进入redis的src目录
cd /tmp/redis-6.2.4/src
# 创建集群
./redis-trib.rb create --replicas 1 192.168.150.101:7001 192.168.150.101:7002 192.168.150.101:7003 192.168.150.101:8001 192.168.150.101:8002 192.168.150.101:8003

2)Redis5.0以后

我们使用的是Redis6.2.4版本,集群管理以及集成到了redis-cli中,格式如下:

redis-cli --cluster create --cluster-replicas 1 192.168.150.101:7001 192.168.150.101:7002 192.168.150.101:7003 192.168.150.101:8001 192.168.150.101:8002 192.168.150.101:8003

命令说明:

  • redis-cli --cluster或者./redis-trib.rb:代表集群操作命令
  • create:代表是创建集群
  • --replicas 1或者--cluster-replicas 1 :指定集群中每个master的副本个数为1,此时节点总数 ÷ (replicas + 1) 得到的就是master的数量。因此节点列表中的前n个就是master,其它节点都是slave节点,随机分配到不同master

运行后的样子:

在这里插入图片描述

这里输入yes,则集群开始创建:

通过命令可以查看集群状态:

redis-cli -p 7001 cluster nodes

在这里插入图片描述

5.1.5 测试

尝试连接7001节点,存储一个数据:

# 连接
redis-cli -p 7001
# 存储数据
set num 123
# 读取数据
get num
# 再次存储
set a 1

结果悲剧了:

集群操作时,需要给redis-cli加上-c参数才可以:

redis-cli -c -p 7001

这次可以了:

5.2 散列插槽

在这里插入图片描述

redis会将数据绑定到插槽,将插槽平均分给上述7001 7002 7003 三个主节点中,下面演示:

在这里插入图片描述

那么我们如何控制同一类数据在一个redis节点中?假设我们想将a与num放在同一个redis下,那么你在设置num时,如下修改即可:

在这里插入图片描述
总结
在这里插入图片描述

5.3 集群伸缩【添加、删除Redis节点】

5.3.1 添加节点

在这里插入图片描述
在这里插入图片描述

操作如下:

# 记得要放开7004和17004端口
# 创建目录7004
mkdir 7004
cp redis.conf 7004
sed -i s/6379/7004/g 7004/redis.conf
# 启动服务
redis-server 7004 redis.conf
# 查看状态
ps -ef | grep redis
# 将7004加入到集群中
redis-cli --cluster add-node 192.168.150.101:7004 192.168.150.101:7001
# 查看集群状态
redis-cli -p 7001 cluster nodes

可见7004加入到集群中且为一个master主节点,但是还没有插槽
在这里插入图片描述

这里将7001的0-3000号插槽分配给7004:

# 将7001的插槽重新分片
redis-cli --cluster reshard 192.168.150.101:7001

在这里插入图片描述

查看状态,可以看到0-3000已经分配给7004了

在这里插入图片描述

5.3.2 删除节点

# 1.将0-3000号插槽还给7001步骤类似于上面,这里不演示了# 2.查看帮助文档
redis-cli --cluster help
# 3.获取7004的ID
redis-cli -p 7001 cluster nodes
# 4.删除节点 
redis-cli --cluster del-node 要删除节点的IP端口 要删除节点的ID

5.4 故障转移

分片集群虽然没有哨兵,但是也可以实现故障转移

5.4.1 自动故障转移

# 动态查看7001状态
watch redis-cli -p 7001 cluster nodes
# 使7002宕机
redis-server 7002/redis.conf

下图可以看到7002宕机后,自动使8001成为master主节点:

在这里插入图片描述

5.4.2 手动故障转移

在这里插入图片描述
案例:操作7002使其回复称master主节点

[root@iZ2ze1r1nnqykr8zfme6cjZ tmp]# redis-cli -p 7002
127.0.0.1:7002> cluster failover 
OK

在这里插入图片描述

5.5 RedisTemplate访问分片集群

在这里插入图片描述

当访问http://localhost:8080/get/num时,查看日志信息,访问的是8002从节点隶属于7001主节点,从节点执行读操作

当访问http://localhost:8080/set/num/123时,查看日志信息,访问的是7001主节点,从而实现读写分离主节点执行写操作

当访问http://localhost:8080/set/a/123时,查看日志信息,访问的是7003主节点,表明不同数据有不同的插槽

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/764930.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Web应用技术基础】HTML(5)——案例1:展示简历信息

样式&#xff1a; 代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>展示简历信息…

真机笔记(1)第一阶段知识讲解

目录 第一阶段讲解&#xff1a; 1.1 机房 1.2 分类&#xff1a; 1.3 机房建设标准 1.3.1 安全性: 1.3.2 供电&#xff1a; 1.3.3 空气调节&#xff1a;&#xff08;恒温恒湿&#xff09; 1.3.4 电磁防护&#xff1a; 2.1 机柜 2.2 分类 2.3 机柜的高度单位 3.1 设备…

【教程】PLSQL查看表属性乱码解决方法

一、前言 PL/SQL是Oracle数据库的编程语言&#xff0c;用于编写存储过程、触发器、函数等。 今天用plsql想查看表的属性&#xff0c;看看各个字段的注释&#xff0c;可是打开一看&#xff0c;居然是乱码的&#xff0c;如下面这样 如果在使用PL/SQL查看表属性时出现乱码&…

隐语笔记3 —— 隐语架构

隐语架构一览 隐语产品层 定位&#xff1a; 通过可视化产品&#xff0c;降低终端用户的体验和演示成本。通过模块化API降低技术集成商的研发成本。 人群画像&#xff1a; 隐私保护计算集成商&#xff0c;产品人员&#xff0c;隐私保护计算需求方&#xff0c;开发人员&#xff…

Flutter-仿携程首页类型切换

效果 唠叨 闲来无事&#xff0c;不小心下载了携程app&#xff0c;还幻想可以去旅游一番&#xff0c;奈何自己运气不好&#xff0c;自从高考时第一次吹空调导致自己拉肚子考试&#xff0c;物理&#xff0c;数学考了一半就交卷&#xff0c;英语2B铅笔除了问题&#xff0c;导致原…

基于modbus TCP实现EPICS与西门子S7 1200系列1215C PLC的通信

PLC介绍 西门子系列PLC在国内的市场占比第一&#xff0c;1200系列中小型PLC&#xff0c;因其众多的产品序列、强大的通讯功能和丰富扩展模块&#xff0c;被使用在工业生产、自动化生产线、智能制造、机器人等各行各业。根据CPU的供电电源的型号和数字量输出的类型&#xff0c;…

专业130+总分410+西南交通大学924信号与系统考研经验西南交大电子信息通信工程,真题,大纲,参考书。

初试分数出来&#xff0c;专业课924信号与系统130&#xff0c;总分410&#xff0c;整体上发挥正常&#xff0c;但是还有遗憾&#xff0c;其实自己可以做的更好&#xff0c;总结一下经验&#xff0c;希望对大家有所帮助。专业课&#xff1a;&#xff08;130&#xff09; 西南交…

【技术栈】Spring Cache 简化 Redis 缓存使用

​ SueWakeup 个人主页&#xff1a;SueWakeup 系列专栏&#xff1a;学习技术栈 个性签名&#xff1a;保留赤子之心也许是种幸运吧 ​ 本文封面由 凯楠&#x1f4f8; 友情提供 目录 本栏传送门 1. Spring Cache 介绍 2. Spring Cache 常用注解 注&#xff1a;手机端浏览本文章…

DS-红黑树(RBTree)

一.红黑树 1.1 红黑树的起源 当对对AVL树做一些结构修改的操作时候&#xff0c;性能较为低下&#xff0c;比如&#xff1a;插入时要维护其绝对平衡&#xff0c;旋转的次数比较多&#xff0c;更差的是在删除时&#xff0c;有可能一直要让旋转持续到根的位置。 因此1972年Rudolf…

YOLOv8独家改进:backbone改进 | 视觉新主干!RMT:RetNet遇见视觉Transformer | CVPR2024

💡💡💡本文独家改进:RMT:一种强大的视觉Backbone,灵活地将显式空间先验集成到具有线性复杂度的视觉主干中,在多个下游任务(分类/检测/分割)上性能表现出色! 💡💡💡Transformer 在各个领域验证了可行性,在多个数据集下能够实现涨点 改进结构图如下: 收录 …

Canine IP-10/CXCL 10 ELISA试剂盒上新

科研用Canine IP-10/CXCL 10 ELISA试剂盒重磅来袭&#xff0c;将在免疫学、癌症研究与神经科学等多个领域助力各位老师们的研究&#xff01; 图1&#xff1a;犬IP-10/CXCL10结构预测&#xff08;图片来源&#xff1a;UniProt&#xff09; C-X-C基序趋化因子(C-X-C motif chemok…

基于飞凌嵌入式i.MX6ULL核心板的电梯智能物联网关方案

电梯是现代社会中不可或缺的基础性设施&#xff0c;为人们的生产生活提供了很大的便捷。我国目前正处于城镇化的快速发展阶段&#xff0c;由此带动的城市基础设施建设、楼宇建设、老破小改造等需求也让我国的电梯行业处在了一个高速增长期。截至2023年年底&#xff0c;中国电梯…

UE5 GameMode C++函数 学习

已经尝试&#xff0c;确实能重启游戏 类描述符加了noplaceable过后即使是Actor也不能放到场景中了&#xff0c;关卡蓝图&#xff0c;GameMode&#xff0c;GameState这些就不能放场景中了 UFUNCTION(exec)

ruoyi-nbcio-plus基于vue3的flowable增加开始节点的表单绑定修改

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码&#xff1a; https://gitee.com/nbacheng/ruoyi-nbcio 演示地址&#xff1a;RuoYi-Nbcio后台管理系统 http://122.227.135.243:9666/ 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码&#xff1a…

Android Studio Gradle设置查看全部task

如果你在 Android Studio 的 Gradle 窗口中看不到所有的任务&#xff0c;你可以尝试以下步骤来解决这个问题 android studio 版本&#xff1a; Android Studio Iguana | 2023.2.1 Build #AI-232.10227.8.2321.11479570, built on February 22, 2024 打开 Android Studio 的设置…

行业官网:律师行业官网解决方案和案例

hello&#xff0c;我是大千UI工厂&#xff0c;从此篇开始介绍各行业官网建设的解决方案 和经典案例&#xff0c;本期介绍律师行业&#xff0c;欢迎老铁们关注、评论、如有设计需求可以私信我们。 一、高大上律师官网有什么作用 高大上官网对律师行业的作用主要体现在以下几个…

传输线和串扰(一):串扰的叠加以及耦合的起源

串扰是六大信号完整性问题之一。它是将不需要的信号从一个网络传输到相邻网络&#xff0c;并且发生在每对网络之间。网络包括信号路径和返回路径&#xff0c;它连接系统中的一个或多个节点。我们通常将具有噪声源的网络称为主动网络或攻击网络。产生噪声的网络称为安静网络或受…

机器学习 - 训练模型

接着这一篇博客做进一步说明&#xff1a; 机器学习 - 选择模型 为了解决测试和预测之间的差距&#xff0c;可以通过更新 internal parameters, the weights set randomly use nn.Parameter() and bias set randomly use torch.randn(). Much of the time you won’t know what…

STM32之HAL开发——手动移植HAL库

HAL库移植步骤 创建目录 配置启动文件 在\Drivers\CMSIS\Device\ST\stm32f1xx\Source\Templates\ARM目录下&#xff0c;根据你的芯片型号选择对应的启动文件&#xff0c;不同容量大小的芯片&#xff0c;对应的启动文件也不一样。 注意&#xff1a;在HAL库中&#xff0c;不同容…

HTML网页文档和DOM结构介绍

HTML网页文档和DOM结构介绍 HTML网页文档 HTML&#xff0c;全称为超文本标记语言&#xff08;Hypertext Markup Language&#xff09;&#xff0c;是用来描述并定义内容结构的标记语言&#xff0c;它是构建任何网页和网络应用的最基础的组成部分。HTML文档由一系列的元素构成…