AI助力生产制造质检,基于轻量级YOLOv8n模型开发构建工业生产制造场景下的瓷砖瑕疵检测识别分析系统

瓷砖生产环节一般经过原材料混合研磨、脱水、压胚、喷墨印花、淋釉、烧制、抛光,最后进行质量检测和包装。得益于产业自动化的发展,目前生产环节已基本实现无人化。而质量检测环节仍大量依赖人工完成。一般来说,一条产线需要配数名质检工,人工成本是相当高昂的,且需要有经验的工人师傅才能够胜任,长时间在高光下观察瓷砖表面寻找瑕疵。这样导致质检效率低下、质检质量层次不齐且成本居高不下。瓷砖表检是瓷砖行业生产和质量管理的重要环节,也是困扰行业多年的技术瓶颈。考虑到当下AI产业化融合的快速发展趋势,将AI技术应用于实际的工业生产制造流程中,事实证明能够有效提升瓷砖表面瑕疵质检的效果和效率,降低对大量人工的依赖。本文也是基于这样的深度思考,想要从实验的角度来开发构建瓷砖生产制造场景下的智能化自动化瑕疵缺陷检测识别系统,助力实际生产制造。

在前文中我们初步实践了瓷砖瑕疵检测项目,刚兴趣的话可以自行移步阅读即可:

《AI助力生产制造质检,基于轻量级YOLOv5s融合CBAM注意力机制开发构建工业生产制造场景下的瓷砖瑕疵检测识别分析系统》

《AI助力生产制造质检,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建工业生产制造场景下的瓷砖瑕疵检测识别分析系统》

本文的主要想法是想要基于最新的YOLOv8系列中最为轻量级的n系列的模型来开发构建生产制造场景下的瓷砖瑕疵检测识别系统,首先看下实例效果:

简单看下实例数据集:

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

YOLOv8官方项目地址在这里,如下所示:

目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8

另外一套预训练模型权重地址如下:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64018.4142.41.213.510.5
YOLOv8s64027.7183.11.4011.429.7
YOLOv8m64033.6408.52.2626.280.6
YOLOv8l64034.9596.92.4344.1167.4
YOLOv8x64036.3860.63.5668.7260.6

是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型,可以根据自己的需要进行选择使用,这里就不再详细展开了。

简单的实例实现如下所示:

from ultralytics import YOLO# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里因为时间有限,暂时没有能够开发完成五款不同参数量级的模型来进行综合全面的对比分析,后面找时间再进行,这里选择的是YOLOv8下最为轻量级的n系列的模型,等待训练完成后我们来详细看下结果。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率-召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率-召回率曲线。
根据曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
精确率-召回率曲线提供了更全面的模型性能分析,特别适用于处理不平衡数据集和关注正例预测的场景。曲线下面积(Area Under the Curve, AUC)可以作为评估模型性能的指标,AUC值越高表示模型的性能越好。
通过观察精确率-召回率曲线,我们可以根据需求选择合适的阈值来权衡精确率和召回率之间的平衡点。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【训练可视化】

【Batch实例】

【离线推理实例】

感兴趣的话也都可以试试看!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/764394.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

论文阅读-MIPD:一种用于分布式深度神经网络训练的自适应梯度稀疏化框架

摘要—基于参数服务器架构的异步训练广泛应用于大规模数据集和深度神经网络模型的扩展训练。在大规模分布式深度学习系统中,通信一直被认为是主要瓶颈。最近的研究尝试通过梯度稀疏化和量化方法来减少通信流量。我们发现前期研究存在三个限制。首先,他们…

YOLOv5-Y5周:yolo.py文件解读

本文为🔗365天深度学习训练营 中的学习记录博客 原作者:K同学啊|接辅导、项目定制 我的环境: 1.语言:python3.7 2.编译器:pycharm 3.深度学习框架Tensorflow/Pytorch 1.8.0cu111 一、代码解读 import argparse i…

【洛谷 P8715】[蓝桥杯 2020 省 AB2] 子串分值 题解(组合数学+乘法原理)

[蓝桥杯 2020 省 AB2] 子串分值 题目描述 对于一个字符串 S S S, 我们定义 S S S 的分值 f ( S ) f(S) f(S) 为 S S S 中恰好出现一次的字符个数。例如 f ( ′ ′ a b a ′ ′ ) 1 f\left({ }^{\prime \prime} \mathrm{aba}{ }^{\prime \prime}\right)1 f(′′aba′′)…

Vscode与Cmake搭配配置opencv使用

vscode与Cmake基本使用 下载插件 CtrlShiftp打开VSCode的指令面板,然后输入cmake:q,VSCode会根据输入自动提示,然后选择CMake: Quick Start选择编译器根据提示输入项目名称选择可执行文件编译项目 方式一:执行命令cd build cmake…

一键将自己网增加一个抖音小程序-源代码

把自己的网址链接,也就是你想要的一个页面转变为抖音小程序,让你轻松拥有一个自己的抖音小程序。 几分钟搞定。 跟着视频来操作就可以了,很简单。视频一定要完整看完啊,对于小白。 如果你的网址可能有不好过审核的页面&#xff0c…

基于python+vue的stone音乐播放器的设计与实现flask-django-php-nodejs

随着我国经济的高速发展与人们生活水平的日益提高,人们对生活质量的追求也多种多样。尤其在人们生活节奏不断加快的当下,人们更趋向于足不出户解决生活上的问题,stone音乐播放器展现了其蓬勃生命力和广阔的前景。与此同时,为解决用…

华为配置WLAN 802.1X认证实验

配置WLAN 802.1X认证示例 组网图形 图1 配置802.1X认证组网图 业务需求组网需求数据规划配置思路配置注意事项操作步骤 业务需求 用户接入WLAN网络,使用802.1X客户端进行认证,输入正确的用户名和密码后可以无线上网。且在覆盖区域内移动发生漫游时&…

MySQL面试题--MySQL内部技术架构

目录 1.Mysql内部支持缓存查询吗? 2.MySQL8为何废弃掉查询缓存? 3.替代方案是什么? 4.Mysql内部有哪些核心模块组成,作用是什么? 5.一条sql发送给mysql后,内部是如何执行的?(说…

MYSQL 同步到ES 如何设计架构保持一致性

简单使用某个组件很容易,但是一旦要搬到生产上就要考虑各种各样的异常,保证你方案的可靠性,可恢复性就是我们需要思考的问题。今天来聊聊我们部门在 MYSQL 同步到ES的方案设计。 在面对复杂条件查询时,MYSQL往往显得力不从心&…

Gitlab介绍

1.什么是Gitlab GitLab是一个流行的版本控制系统平台,主要用于代码托管、测试和部署。 GitLab是基于Git的一个开源项目,它提供了一个用于仓库管理的Web服务。GitLab使用Ruby on Rails构建,并提供了诸如wiki和issue跟踪等功能。它允许用户通…

从0到1实现RPC | 02 RpcConsumer的远程调用

一、RPC的简化版原理如下图(核心是代理机制)。 1.本地代理存根: Stub 2.本地序列化反序列化 3.网络通信 4.远程序列化反序列化 5.远程服务存根: Skeleton 6.调用实际业务服务 7.原路返回服务结果 8.返回给本地调用方 二、新建一个模块rpc-demo-c…

后端程序员入门react笔记(九)- react 插件使用

setState setState引起的react的状态是异步的。操作完毕setState之后如果直接取值,可能取不到最新的值,我们举个例子console.log(this.state.num)打印的值,总是上一次的值而不是最新的。 import React, {Component} from react; class Ap…

基于ArcGIS的2015-2020辽宁省土地利用变化分析

数据准备 栅格转面 运行ArcToolbox,打开【转换工具】,选择【从栅格转出】里面的【栅格转面工具】,调出面板进行参数设置。输入栅格选择裁剪的2015年中国土地利用遥感监测数据(…

数据挖掘与分析学习笔记

一、Numpy NumPy(Numerical Python)是一种开源的Python库,专注于数值计算和处理多维数组。它是Python数据科学和机器学习生态系统的基础工具包之一,因为它高效地实现了向量化计算,并提供了对大型多维数组和矩阵的支持…

【ReactJS】使用GoJS实现自己的图表App

目录 1:用于绘制自定义图表的JavaScript库:用于绘制UML(或BPMN或ERD …)图表的JavaScript库:2:为什么选择GoJS?3:让我们使用现有的React应用程序:步骤1:步骤2:步骤3:步骤4:推荐超级课程: Docker快速入门到精通Kubernetes入门到大师通关课AWS云服务快速入门实战1:…

git创建仓库、克隆、拉取、上传、历史等常见操作集锦

本地工作目录、暂存区、本地仓库和远程仓库 workspace工作区:本地项目地址index/stage暂存区:git add .将工作区内容加入到了暂存区repository本地仓库:在本地存储多个版本的文件,也称为版本库。其中有一个head指针指向最新放入仓库的文件版本,git commit -m "描述你…

[医学分割大模型系列] (1) SAM 分割大模型解析

[医学大模型系列] [1] SAM 分割大模型解析 1. 特点2. 网络结构2.1 Image encoder2.2 Prompt encoder2.3 Mask decoder 3. 数据引擎4. 讨论 论文地址:Segment Anything 开源地址:https://github.com/facebookresearch/segment-anything demo地址&#x…

C#,图片分层(Layer Bitmap)绘制,反色、高斯模糊及凹凸贴图等处理的高速算法与源程序

1 图像反色Invert 对图像处理的过程中会遇到一些场景需要将图片反色,反色就是取像素的互补色,比如当前像素是0X00FFFF,对其取反色就是0XFFFFFF – 0X00FFFF = 0XFF0000,依次对图像中的每个像素这样做,最后得到的就是原始2 图像的反色。 2 高斯模糊(Gauss Blur)算法 …

cesium知识点:坐标系

一,地理坐标系 1.经纬度坐标系 对象:没有实际的对象 说明:cesium默认使用WGS84坐标系作为空间参考,坐标原点在椭球的质心。 2.弧度坐标系(Cartographic) 对象:new Cesium.Cartographic(longitude, latitude, heigh…