Amazon SageMaker + Stable Diffusion 搭建文本生成图像模型

如果我们的计算机视觉系统要真正理解视觉世界,它们不仅必须能够识别图像,而且必须能够生成图像文本到图像的 AI 模型仅根据简单的文字输入就可以生成图像

近两年,以ChatGPT为代表的AIGC技术崭露头角,逐渐从学术研究的象牙塔迈向工业应用的广阔天地。随着下游行业对快速处理柔性商业业务的需求日益增长,如何提供一个便捷、高效且完整的企业级人工智能解决方案成为了业界亟待解决的问题。幸运的是,亚马逊云服务推出了Amazon SageMaker平台,为企业提供了一站式的人工智能解决方案,满足了市场的迫切需求。

本篇文章将采用Amazon SageMaker+Stable Diffusion实现文本生成图像Demo!

一、Amazon SageMaker简介

Amazon SageMaker是一款亚马逊云服务旗下的全面托管机器学习平台。该平台集成了众多高效工具和服务,使得构建、训练和部署机器学习模型变得前所未有的简单。Amazon SageMaker拥有灵活的计算资源及配置选项,无论项目规模大小,它都能以强大的计算能力,助力训练大型模型。此外,它还提供了强大的管理和监控功能,确保机器学习工作流程的顺畅运行。

Amazon SageMaker机器学习平台提供了一系列能够快速构建、训练和部署机器学习模型的工具和服务,使机器学习工作流程更加高效、易用和可扩展。现在进入

亚马逊云科技: https://mic.anruicloud.com/url/1037

可以免费试用!

二、Amazon SageMaker + Stable Diffusion实践

2.1、创建Amazon SageMaker实例

首先打开亚马逊云控制台,在查找服务处搜索关键词SageMaker,进入Amazon SageMaker环境:

随后,在界面左侧定位至“笔记本”选项并点击。接着,依次选择“笔记本实例”和“创建笔记本实例”,进入配置页面。在此页面中,需注意选择适合的“笔记本实例类型”申请资源的类型,这里建议选择加速型g4dn.xlarge实例,确保高效的计算性能。

在操作系统方面,推荐选择Amazon Linux 2,并搭配Jupyter Lab 3这一交互式编程环境。“卷大小”可根据个人需求进行选择,建议至少设置为20GB,最后点击确定。

2.2、简单测试(可选)

创建实例成功后,可以新建一个初始notebook,复制并粘贴以下代码片段到笔记本的单元格,安装所需依赖

pip install --upgrade -q aiobotocorepip install -q xgboost==1.3.1

然后复制并粘贴以下代码片段,点击run运行:

import pandas as pd
import boto3
import sagemaker
import json
import joblib
import xgboost as xgb
from sklearn.metrics import roc_auc_score# Set SageMaker and S3 client variables
sess = sagemaker.Session()region = sess.boto_region_name
s3_client = boto3.client("s3", region_name=region)sagemaker_role = sagemaker.get_execution_role()# Set read and write S3 buckets and locations
write_bucket = sess.default_bucket()
write_prefix = "fraud-detect-demo"read_bucket = "sagemaker-sample-files"
read_prefix = "datasets/tabular/synthetic_automobile_claims" train_data_key = f"{read_prefix}/train.csv"
test_data_key = f"{read_prefix}/test.csv"
model_key = f"{write_prefix}/model"
output_key = f"{write_prefix}/output"train_data_uri = f"s3://{read_bucket}/{train_data_key}"
test_data_uri = f"s3://{read_bucket}/{test_data_key}"
hyperparams = {"max_depth": 3,"eta": 0.2,"objective": "binary:logistic","subsample" : 0.8,"colsample_bytree" : 0.8,"min_child_weight" : 3}num_boost_round = 100
nfold = 3
early_stopping_rounds = 10# Set up data input
label_col = "fraud"
data = pd.read_csv(train_data_uri)# Read training data and target
train_features = data.drop(label_col, axis=1)
train_label = pd.DataFrame(data[label_col])
dtrain = xgb.DMatrix(train_features, label=train_label)# Cross-validate on training data
cv_results = xgb.cv(params=hyperparams,dtrain=dtrain,num_boost_round=num_boost_round,nfold=nfold,early_stopping_rounds=early_stopping_rounds,metrics=["auc"],seed=10,
)metrics_data = {"binary_classification_metrics": {"validation:auc": {"value": cv_results.iloc[-1]["test-auc-mean"],"standard_deviation": cv_results.iloc[-1]["test-auc-std"]},"train:auc": {"value": cv_results.iloc[-1]["train-auc-mean"],"standard_deviation": cv_results.iloc[-1]["train-auc-std"]},}
}print(f"Cross-validated train-auc:{cv_results.iloc[-1]['train-auc-mean']:.2f}")
print(f"Cross-validated validation-auc:{cv_results.iloc[-1]['test-auc-mean']:.2f}")

这段代码的主要作用是在Amazon S3存储桶中的的汽车保险索赔数据集上,训练一个 XGBoost 二进制分类模型,并评估模型的性能并使用交叉验证来评估其性能,运行单元格后会显示交叉验证训练和验证 AUC 分数。

2.3、Stable Diffusion实践

上一步运行没问题后,我们重新打开Jupyter页面,进入对应实例,选择右侧upload,上传Notebook代码,代码下载链接:

https://static.us-east-1.prod.workshops.aws/public/648e1f0c-f5e0-40eb-87b1-7f3638dba539/static/code/notebook-stable-diffusion.ipynb

上传到笔记本实例当中,上传成功后,点击打开,选择conda_pytorch_p39核,并点击set kernel

这个Diffusion Model的Amazon SageMaker Jupyter文件已经为我们写好了所有配置步骤,环境安装,我们直接点击Run:

该代码在笔记本实例中下载并测试Stable Diffusion模型文件,然后编写模型推理入口,打包模型文件,并上传至S3桶,最后使用代码部署模型至Amazon SageMaker Inference Endpoint。

在juypter notebook的最后,加上这样一段代码,然后将想要生成的句子可以写在prompt里面,就可以实现完整的文本生成图像功能:

from PIL import Image
from io import BytesIO
import base64# helper decoderdef decode_base64_image(image_string):base64_image = base64.b64decode(image_string)buffer = BytesIO(base64_image)return Image.open(buffer)#run prediction
response = predictor[SD_MODEL].predict(data={"prompt": ["A cute panda is sitting on the sofa","a siamese cat wearing glasses,  working hard at the computer",],"height" : 512,"width" : 512,"num_images_per_prompt":1}
)#decode images
decoded_images = [decode_base64_image(image) for image in response["generated_images"]]#visualize generationfor image in decoded_images:display(image)

如上,我们试着生成一张可爱的熊猫坐在沙发上面,等待几秒钟后,推理完成,得到如下结果:

三、Amazon SageMaker 的功能特性

Amazon SageMaker以其强大的功能特性和灵活的配置选项,为数据科学家、业务分析师以及广大开发者提供了全面、高效的机器学习解决方案。

首先,Amazon SageMaker能够让不同背景的用户都能够轻松利用机器学习进行创新。对于数据科学家而言,其提供了功能强大的集成开发环境(IDE),使得他们能够轻松构建、训练和部署复杂的机器学习模型。而对于业务分析师,其提供了无代码界面,即便没有深厚的编程背景,也能通过简单的操作实现机器学习的应用。

其次,Amazon SageMaker 支持如 TensorFlow、PyTorch 和 Apache MXNet多种主流的机器学习框架、支持如scikit-learn、XGBoost等各种机器学习工具包、支持Python、R 等多种编程语言,使得用户能够充分利用现有的技术资源和经验,在机器学习领域实现更快速、更高效的创新。无论是数据科学家、机器学习工程师还是开发者,都能从 Amazon SageMaker 中受益,推动机器学习技术的不断发展和应用。

最后,Amazon SageMaker拥有完全托管、可扩展的基础设施。用户无需担心底层硬件的维护和扩展问题,只需专注于模型的开发和优化。Amazon SageMaker通过高性能、经济实惠的基础设施支持,帮助用户轻松构建自己的机器学习模型和生成式人工智能应用程序的开发。

现在进入亚马逊云科技: https://mic.anruicloud.com/url/1037

可以获取Studio 笔记本上每月 250 个小时的 ml.t3.medium,或者按需笔记本实例上每月 250 个小时的 ml.t2 medium 或 ml.t3.medium,每月 50 个小时的 m4.xlarge 或150小时 的m5.xlarge 实例试用。除此之外,更有云服务器(Amazon EC2),云存储(Amazon S3),负载均衡(Elastic Load Balancing),虚拟服务器VPS(Amazon Lightsail)、视频会议(Amazon Chime )等等100 余种云产品或服务免费试用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/761872.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

应急救援装备无人机是否必要?无人机在应急救援中的具体应用案例有哪些?

无人机(Drone)是一种能够飞行并自主控制或远程操控的无人驾驶飞行器。它们通常由航空器、控制系统、通讯链路和电源系统组成,并可以根据任务需求搭载不同类型的传感器、摄像头、货物投放装置等设备。 无人机的种类繁多,从大小、形…

Android Handler使用介绍

Android 中的 Handler 是用来和线程通信的重要工具。它主要用于在后台线程中执行任务,并将结果传递回主线程以更新用户界面。 一、基本概念 线程间通信: Android 应用通常具有主线程(也称为 UI 线程)和后台线程。Handler 允许您从…

操作系统面经-程序和进程的区别

1.程序、进程、线程简述 程序的基本概念 程序是含有指令和数据的文件,被存储在磁盘或其他的数据存储设备中,也就是说程序是静态的代码。 进程的基本概念 在多道程序环境下,允许多个程序并发执行,此时它们将失去封闭性&#xf…

Verilog刷题笔记41

题目:Create 8 D flip-flops with active high asynchronous reset. All DFFs should be triggered by the positive edge of clk. 解题: module top_module (input clk,input areset, // active high asynchronous resetinput [7:0] d,output [7:0]…

哪些事是你当了领导才明白的?

哪些事是你当了领导才明白的? 毕业5年,17年开始带团队,确实很多事不做到管理这一层,就真的意识不到。 带着【执行者】和【管理者】这2个视角,再结合我毕业至今这5年的所有职场经历,聊聊“职场潜规则”。 …

docker swarm 集群创建

1,目的: 通过docker swarm 工具将一台或者多台安装了docker的服务器组成一个完整的集群,该集群中的node节点可以通过Leader节点管理。在使用docker stack部署时,可以将容器自动分发到合适的节点上。 2,服务器准备&am…

python统计分析——t分布、卡方分布、F分布

参考资料:python统计分析【托马斯】 一些常见的连续型分布和正态分布分布关系紧密。 t分布:正态分布的总体中,样本均值的分布。通常用于小样本数且真实的均值/标准差不知道的情况。 卡方分布:用于描述正态分布数据的变异程度。 F分…

R语言Meta分析核心技术:科研论文写作与数据可视化技巧

R语言作为一种强大的统计分析和绘图语言,在科研领域发挥着日益重要的作用。其中,Meta分析作为一种整合多个独立研究结果的统计方法,在R语言中得到了广泛的应用。通过R语言进行Meta分析,研究者能够更为准确、全面地评估某一研究问题…

ShardingSphere+JPA+Druid实现分表操作

要在SpringBoot项目中实现分表操作,本文使用的是ShardingSphereJPADruid实现。过程中出现问题记录一下。 准备MySQL数据库表 这里准备的是一张主表test_cost,两张从表test_cost_0和test_cost_1,结构需要相同,主表只是声明了表结构…

用大语言模型控制交通信号灯,有效缓解拥堵!

城市交通拥堵是一个全球性的问题,在众多缓解交通拥堵的策略中,提高路口交通信号控制的效率至关重要。传统的基于规则的交通信号控制(TSC)方法,由于其静态的、基于规则的算法,无法完全适应城市交通不断变化的…

Tensorflow2.0笔记 - 链式法则例子

本笔记简单记录链式法则的原理,关于链式法则,本身和高等数学中的链式求导法则是一样的,深度学习中相关资料可以参考这里: 【深度学习之美22】BP算法详解之链式法则 - 知乎10.5 什么是计算图?我们知道, 神经…

Windows环境下编译ffmpeg 6.1源码--Virtual Studio + Msys2方式

环境准备 约定:源码全部放到sources下,目录结构说明 /d/java/ffmpeg #工程工目录 ├── build #存放编译文件的目录,子目录为具体模块的构建目录 │ ├── fdk-aac │ ├── ffmpeg │ └── x264 ├── instal…

提升水库大坝安全与效率:现代技术云平台的应用

在我国,水库大坝的数量居世界之首,它们在推动国民经济发展中扮演着不可或缺的角色。然而,要想让这些水利工程充分发挥其价值,不仅需要精准的调度与高效的管理,更重要的是要确保其安全无虞。一旦发生事故,后…

鸿蒙Harmony应用开发—ArkTS-全局UI方法(列表选择弹窗)

列表弹窗。 说明: 从API Version 8开始支持。后续版本如有新增内容,则采用上角标单独标记该内容的起始版本。 本模块功能依赖UI的执行上下文,不可在UI上下文不明确的地方使用,参见UIContext说明。 从API version 10开始&#xff0…

数据结构——循环队列的实现

💞💞 前言 hello hello~ ,这里是大耳朵土土垚~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 💥个人主页&#x…

【回顾练习】静态路由配置综合实验报告

一、分析要求 为R6设备配置公有IP地址,并确保只能进行IP地址配置,无法进行其他配置。为R1-R5设备分配私有IP地址。为R1、R2、R4配置两个环回地址,为R5、R6配置一个环回地址。在R3上配置DHCP服务,以供两台PC自动获取IP地址。使用动…

数字电源浅析

电力电子技术是关于能量转换、调节、控制和管理等方面的学科,而数字电源则是电力电子技术的一种应用,是利用数字电路技术实现电源控制和管理的新型电源。 一、什么是数字电源 数字电源是一种数字控制的电源设备,可以通过数字控制芯片(DSP、MCU等)实现输出电压、电流、功…

向上生长

(1) 我记得2010年,在中国的苹果应用商店里,充斥的App还有很多:日历App、天气App、电池省电App、记事本App…。但这已经过去了2007-2008-2009三年,这些应用仍然很欢。 我有一个朋友算是中国最早一批开发iOS …

U盘插入电脑没有显示怎么办?

U盘可以备份/转移数据,还可以作为启动盘重装系统,但很多用户在使用u盘的时候,都遇到过这样的问题,就是u盘插入电脑没有反应,在电脑上找不到u盘设备。那么今天就跟大家等下U盘插入电脑没有显示怎么办。 原因/解决方法一…

html5cssjs代码 036 CSS默认值

html5&css&js代码 036 CSS默认值 一、代码二、解释 CSS默认值(也称为浏览器默认样式)是指当HTML元素没有应用任何外部CSS样式时,浏览器自动为这些元素赋予的一组基本样式。这些样式是由浏览器的默认样式表(User Agent sty…