Flink GateWay、HiveServer2 和 hive on spark

Flink SQL Gateway简介

从官网的资料可以知道Flink SQL Gateway是一个服务,这个服务支持多个客户端并发的从远程提交任务。Flink SQL Gateway使任务的提交、元数据的查询、在线数据分析变得更简单。

Flink SQL Gateway的架构如下图,它由插件化的Endpoints和SqlGatewayService两部分组成。SqlGatewayService是可复用的处理客户端请求的服务。Endpoint是对外暴露的用户可以连接的接口。

Flink SQL Gateway作业提交流程

Flink SQL Gateway的处理流程如下

1.创建Session

当客户端连接Flink SQL Gateway时,Flink SQL Gateway会创建一个Session来存储客户端和 SQL Gateway交互的信息。Session创建完成后Flink SQL Gateway会返回给客户端一个SessionHandle标识

2.提交SQL

客户端创建完Session后就可以提交SQL到SQL Gateway。提交SQL时,SQL会被翻译成一个Operation,并且每个Operation会对应一个OperationHandle标识。使用OperationHandle可以获取查询的结果、取消Operation的执行或者关闭Operation

3. 获取结果

用户可以通过OperationHandle获取Operation的执行结果。如果Operation准备好了,SQL Gateway会返回一批数据和一个获取下一批数据的URI。当所有数据都获取完了,SQL Gateway会将resultType的值设置为EOS,并且将获取下一批数据的URI设置为null。

如果想了解flink sql gateway连接hiveserver2,参考:

Flink SQL Gateway的使用 - 知乎 (zhihu.com)

本质上就是把hive变成flink的一个catalog,就像doris外部表集成mysql一样,mysql就是doris的一个catalog,可以直接用doris语句操作mysql了。这里也一样,hive变成了flinksql的一个catalog。

怎么连接hive并直接可以用hive的代码(虽然这个需求我们是执行flink来跑hive数据),用hiveserver2最高效,下面有hiveserver2的介绍。

那为什么不直接使用 Flink SQL 而使用 Gateway 呢?
  • 远程访问需求: 有时用户可能需要从不同的位置或者不同的应用程序中访问 Flink SQL 引擎,这就需要一个中心化的访问点,而 Gateway 提供了这样的功能。

  • 集中管理和监控需求: 在大型生产环境中,可能需要一个统一的管理界面来管理和监控 Flink SQL 作业,而 Gateway 提供了这样的功能。

  • 安全性需求: 在企业环境中,安全性通常是一个重要考虑因素,而 Gateway 可以提供身份验证和授权机制,帮助确保系统的安全性。

Hiveserver2介绍:

在启动Hive的时候,除了必备的MetaStore服务外 , 我们前面还有提到过2种方式使用Hive :

  • bin/hive , 就是Hive Shell的客户端 , 直接写SQL
  • bin/hive --service hiveserver2

HiveServer2是Hive的一个服务组件,它提供了一个多客户端访问的接口,允许用户通
过多种方式 (如JDBC、ODBC等) 连接Hive,并执行HiveQL语句。HiveServer2可以
独立于Hive运行,并且可以与其他应用程序进行集成,使得用户可以更加灵活地使用H
ive.
HiveServer2的主要作用有:

1.支持多客户端连接
HiveServer2可以同时处理多个客户端的连接请求,每个客户端可以独立地执行HiveQ
L语句。这使得多个用户可以同时访问Hive,并且不会相互影响。同时,HiveServer2
还支持连接池,可以有效地管理连接资源,提高系统的并发性能。

2.提供安全访问控制
HiveServer2支持基于Kerberos的认证和授权机制,可以对用户进行身份验证,并目可
以通过角色和权限管理来限制用户的访问权限。这样可以确保数据的安全性,并且可
以按需控制用户对数据的访问和操作

3.支持长连接和会话管理
HiveServer2支持长连接和会话管理,客户端可以通过保持连接的方式避免多次建立和
关闭连接的开销,提高了系统的性能和响应速度。同时,HiveServer2还提供了会话管
理功能,可以为每个用户分配一个独立的会话,可以在会话级别上进行状态管理和资
源隔离。

4.支持异步查询和结果集缓存
HiveServer2支持异步查询和结果集缓存,客户端可以提交一个查询请求后立即返回
然后通过轮询的方式获取查询结果。这样可以减少客户端的等待时间,并且可以利用
结果集缓存提高查询的性能

启动Hive后,

此时后台执行脚本 : nohup bin/hive --service hiveserver2 >> logs/hiveserver2.log 2>&1 &

bin/hive --service metastore , 启动的是元数据管理服务

bin/hive --service hiveserver2 , 启动的是hiveserver2服务

所以 , HiveServer2其实就是Hive内置的一个ThriftServer服务 , 提供Thrift端口供其他客户端连接

这时可以连接ThrifServer的客户端有 :

Hive内置的beeline客户端工具(命令行形式)
第三方的图形化工具 , 如DataGrip这些
下面就是它们之间的关系:

话不多说, 我们开始实际操作

在安装hive的服务器上, 首先启动metastore服务 , 然后启动hiveserver2服务

#启动metastore服务
nohup bin/hive --service metastore >> logs/metastore.log 2>&1 &
#启动hiveserver2服务
nohup bin/hive --service hiveserver2 >> logs/hiveserver2.log 2>&1 &

Beeline连接

在hive的服务器上可以直接使用beeline客户端进行连接 , Beeline是JDBC的客户端 , 通过JDBC和HiveServer2进行通信, 协议的地址是 :

jdbc:hive2://node:10000  

这个10000端口是hiveserver2默认向外开发的端口

#进入beeline的连接界面
bin/beeline
#开始连接
!connect jdbc:hive2://node:10000
#接下来会开始输入hive的启动用户名密码,然后就可以开始连接了

这是beeline客户端界面

这时hive的原生界面

DataGrip连接
这种第三方的客户端页面美观大方 , 操作简洁 , 更重要的是sql编辑环境优雅 , sql语法智能提示补全 , 关键字高亮 , 查询结果智能显示 , 按钮操作大于命令操作

接下来是具体的连接步骤

打开DataGrip

选择Apach Hive进行连接

填写相关信息

连上后的操作就跟平常操作mysql一样了。

Hive on Spark

spark和hive本质上是没有关系的,两者可以互不依赖。但是在企业实际应用中,经常把二者结合起来使用。而业界spark和hive结合使用的方式,主要有以下三种:

  1. hive on spark。在这种模式下,数据是以table的形式存储在hive中的,用户处理和分析数据,使用的是hive语法规范的 hql (hive sql)。 但这些hql,在用户提交执行时(一般是提交给hiveserver2服务去执行),底层会经过hive的解析优化编译,最后以spark作业的形式来运行。事实上,hive早期只支持一种底层计算引擎,即mapreduce,后期在spark 因其快速高效占领大量市场后,hive社区才主动拥抱spark,通过改造自身代码,支持了spark作为其底层计算引擎。目前hive支持了三种底层计算引擎,即mr, tez和spark.用户可以通过set hive.execution.engine=mr/tez/spark来指定具体使用哪个底层计算引擎。

  2. spark on hive。上文已经说到,spark本身只负责数据计算处理,并不负责数据存储。其计算处理的数据源,可以以插件的形式支持很多种数据源,这其中自然也包括hive。当我们使用spark来处理分析存储在hive中的数据时,这种模式就称为为 spark on hive。这种模式下,用户可以使用spark的 java/scala/pyhon/r 等api,也可以使用spark语法规范的sql ,甚至也可以使用hive 语法规范的hql 。而之所以也能使用hql,是因为 spark 在推广面世之初,就主动拥抱了hive,通过改造自身代码提供了原生对hql包括hive udf的支持(其实从技术细节来将,这里把hql语句解析为抽象语法书ast,使用的是hive的语法解析器,但后续进一步的优化和代码生成,使用的都是spark sql 的catalyst),这也是市场推广策略的一种吧。

  3. spark + spark hive catalog。这是spark和hive结合的一种新形势,随着数据湖相关技术的进一步发展,这种模式现在在市场上受到了越来越多用户的青睐。其本质是,数据以orc/parquet/delta lake等格式存储在分布式文件系统如hdfs或对象存储系统如s3中,然后通过使用spark计算引擎提供的scala/java/python等api或spark 语法规范的sql来进行处理。由于在处理分析时针对的对象是table, 而table的底层对应的才是hdfs/s3上的文件/对象,所以我们需要维护这种table到文件/对象的映射关系,而spark自身就提供了 spark hive catalog来维护这种table到文件/对象的映射关系。注意这里的spark hive catalog,其本质是使用了hive 的 metasore 相关 api来读写表到文件/对象的映射关系(以及一起其他的元数据信息)到 metasore db如mysql, postgresql等数据库中。(由于spark编译时可以把hive metastore api等相关代码一并打包到spark的二进制安装包中,所以使用这种模式,我们并不需要额外单独安装hive);

  4. Hive 2.0 之后,MR执行引擎已经出于deprecated 状态,“It may be removed without further warning.”,hive官方推荐使用的是 hive on tez 或 hive on spark; Hiv3.0 之后, hive官方推荐使用的是 hive on tez,并在Hive4.0中,移除了 hive on spark;

概括起来,SparkOnHive和 HiveOnSpark的核心区别:

  • 不在于是否访问HIVE数仓中的数据(二者都访问);
  • 也不在于客户端的SQL语法规范是 HIVE SQL 还是 SPARK SQL(Spark支持绝大部分HiveSqly语法);
  • 二者的核心区别在于,客户端的 SQL 是否提交给了服务角色 HiveServer2 (org.apache.hive.service.server.HiveServer2),且该hs2配置了 hive.execution.engine=spark;

Spark SQL gateway 的解决方案-Kyuubi

•HiveServer2 本质上是 HIVE 提供的 SQL gateway服务;

•Spark原生提供的 SQL gateway 服务,只有 spark thrift Server($SPARK_HOME/sbin/start-thriftserver.sh) ,但因为功能和稳定性等各种原因,不推荐在生产环境使用($SPARK_HOME/bin/spark-sql 只是一个spark 应用,不是服务);

•网易的开源组件 Kyuubi,起到了 Spark SQL gateway服务的角色,该项目目前已经是 Apache 顶级开源项目,可以在生产环境使用;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/761584.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Lua中文语言编程源码-第八节,更改loadlib.c 动态库加载器函数, 使Lua加载中文库关键词(加载库,搜索路径,引入)

源码已经更新在CSDN的码库里: git clone https://gitcode.com/funsion/CLua.git 在src文件夹下的loadlib.c 动态库加载器函数,此模块包含适用于具有dlfcn的Unix系统的loadlib实现,适用于Windows系统的实现,以及适用于其他系统的…

探秘开源隐语:架构深度剖析与隐私计算技术之旅

1.隐语架构 隐语(SecretFlow)作为蚂蚁集团开源的可信隐私计算框架,其架构设计具有多层次的特点,虽然具体分层名称可能会根据实际描述略有差异,但我们可以依据已有的技术和信息对其进行结构化的拆解: 硬件层…

如何使用Excel创建一个物品采购表

在企业的日常运营中,物品采购是一个常见且重要的活动。有效的采购管理不仅可以确保企业及时获得所需物资,还可以控制成本、提高效率。Microsoft Excel是一个功能强大的工具,它可以帮助我们创建和管理物品采购表。本文将详细介绍如何使用Excel…

Lua | 一篇文章讲清Lua语法及热更新

目录 一、环境搭建 二、Lua语法 1.输出print、单行注释、多行注释 2.变量 (1)nil (2)number (3)string (3.1)字符串长度 (3.2)字符串拼接 &#xf…

归并算法详细解析

归并排序 1945年,约翰冯诺依曼(John von Neumann)发明了归并排序,这是典型的分治算法的应用。归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Di…

数学建模(Topsis python代码 案例)

目录 介绍: 模板: 案例: 极小型指标转化为极大型(正向化): 中间型指标转为极大型(正向化): 区间型指标转为极大型(正向化): 标…

在Java中使用Apache POI保留Excel样式合并多个工作簿

背景 在日常工作中,我们经常需要将多个Excel文件合并成一个,同时保留原有的样式和格式。Apache POI是一个流行的Java库,用于读取和写入Microsoft Office格式的文件,包括Excel。然而,仅仅使用Apache POI的基本功能进行…

RequestResponse使用

文章目录 一、Request&Response介绍二、Request 继承体系三、Request 获取请求数据1、获取请求数据方法(1)、请求行(2)、请求头(3)、请求体 2、通过方式获取请求参数3、IDEA模板创建Servlet4、请求参数…

WEB 表单练习题

任务如图&#xff1a; <html><head><meta charest"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head><body><table width"…

第二十八章 配置 Web Gateway 的默认参数 - 与 IRIS 的连接

文章目录 第二十八章 配置 Web Gateway 的默认参数 - 与 InterSystems IRIS 的连接(一)与 IRIS 的连接Server Response TimeoutQueued Request TimeoutNo Activity TimeoutApply timeout to all ConnectionsEvent Log LevelEvent Log FileRetain All Log Files 第二十八章 配置…

Apache Commons-Configuration2 堆栈溢出漏洞复现 (CVE-2024-29131)

免责声明 由于传播、利用本CSDN所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任,一旦造成后果请自行承担! 一、产品介绍 Apache Commons Configuration2 是 Apache Commons 组件库中的一个项目,用于处理配置文件的读取、解…

Google的MELON: 通过未定位图像重建精确3D模型的突破性算法

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

算法沉淀——贪心算法七(leetcode真题剖析)

算法沉淀——贪心算法七 01.整数替换02.俄罗斯套娃信封问题03.可被三整除的最大和04.距离相等的条形码05.重构字符串 01.整数替换 题目链接&#xff1a;https://leetcode.cn/problems/integer-replacement/ 给定一个正整数 n &#xff0c;你可以做如下操作&#xff1a; 如果…

数据结构:堆的创建和使用

上一期我们学习了树和二叉树的定义&#xff0c;其中我们了解到了两种特殊的二叉树&#xff1a;满二叉树和完全二叉树。 今天我们还要学习一种新的结构&#xff1a;堆 那这种结构和二叉树有什么联系呢&#xff1f;&#xff1f;&#xff1f; 通过观察我们可以发现&#xff0c;…

什么是通用人工智能(AGI)以及为什么它还没有到来:给AI爱好者的现实检查

人工智能通用智能(AGI)及其现状&#xff1a;AI爱好者的现实检验 引言 人工智能(AI)已经无处不在。从智能助手到自动驾驶汽车&#xff0c;AI系统正在改变我们的生活和商业。但是&#xff0c;如果有一种AI能够超越执行特定任务的能力呢&#xff1f;如果有一种AI能够像人类一样学…

pytorch之torch.save()和torch.load()方法详细说明

torch.save()和torch.load()是PyTorch中用于模型保存和加载的函数。它们提供了一种方便的方式来保存和恢复模型的状态、结构和参数。可以使用它们来保存和加载整个模型或其他任意的Python对象&#xff0c;并且可以在加载模型时指定目标设备。 1.语法介绍 1.1 torch.save()语法…

uni-app开发---4.首页

一、创建 home 分支 运行如下的命令&#xff0c;基于 master 分支在本地创建 home 子分支&#xff0c;用来开发和 home 首页相关的功能&#xff1a; git checkout -b home 二、配置网络请求 由于平台的限制&#xff0c;小程序项目中不支持 axios&#xff0c;而且原生…

ARM-UART实验

串口控制三盏灯亮灭 视频 串口实验验证.mp4 代码 uart4.c #include "uart4.h"void uart4_init() {//使能GPIOB GPIOG UART4外设时钟RCC->MP_AHB4ENSETR | (0x1<<1);//GPIOBRCC->MP_AHB4ENSETR | (0x1<<6);//GPIOGRCC->MP_APB1ENSETR | (0X…

鸿蒙一次开发,多端部署(三)应用UX设计原则

设计原则 当为多种不同的设备开发应用时&#xff0c;有如下设计原则&#xff1a; 差异性 充分了解所要支持的设备&#xff0c;包括屏幕尺寸、交互方式、使用场景、用户人群等&#xff0c;对设备的特性进行针对性的设计。 一致性 除了要考虑每个设备的特性外&#xff0c;还…

SOCKS5代理、代理IP、HTTP与网络安全的融合之旅

在数字化世界的无边网络海洋中&#xff0c;数据以难以想象的速度流动&#xff0c;连接着世界的每一个角落。作为一名软件工程师&#xff0c;深入理解网络通信的基石——SOCKS5代理、代理IP、HTTP协议&#xff0c;并掌握这些技术在网络安全中的应用&#xff0c;是航行于这片海洋…