93 复原IP地址(medium)
有效 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 ‘.’ 分隔。
例如:“0.1.2.201” 和 “192.168.1.1” 是 有效 IP 地址,但是 “0.011.255.245”、“192.168.1.312” 和 “192.168@1.1” 是 无效 IP 地址。
给定一个只包含数字的字符串 s ,用以表示一个 IP 地址,返回所有可能的有效 IP 地址,这些地址可以通过在 s 中插入 ‘.’ 来形成。你 不能 重新排序或删除 s 中的任何数字。你可以按 任何 顺序返回答案。
思路:回溯法
- 递归参数
startIndex一定是需要的,因为不能重复分割,记录下一层递归分割的起始位置。
本题我们还需要一个变量pointNum,记录添加逗点的数量。
所以代码如下:
vector<string> result;// 记录结果
// startIndex: 搜索的起始位置,pointNum:添加逗点的数量
void backtracking(string& s, int startIndex, int pointNum) {
- 递归终止条件
终止条件和131.分割回文串 (opens new window)情况就不同了,本题明确要求只会分成4段,所以不能用切割线切到最后作为终止条件,而是分割的段数作为终止条件。
pointNum表示逗点数量,pointNum为3说明字符串分成了4段了。
然后验证一下第四段是否合法,如果合法就加入到结果集里
代码如下:
if (pointNum == 3) { // 逗点数量为3时,分隔结束// 判断第四段子字符串是否合法,如果合法就放进result中if (isValid(s, startIndex, s.size() - 1)) {result.push_back(s);}return;
}
- 单层搜索的逻辑
在for (int i = startIndex; i < s.size(); i++)
循环中[startIndex, i]
这个区间就是截取的子串,需要判断这个子串是否合法。
如果合法就在字符串后面加上符号.表示已经分割。如果不合法就结束本层循环。
然后就是递归和回溯的过程:
递归调用时,下一层递归的startIndex要从i+2
开始(因为需要在字符串中加入了分隔符.),同时记录分割符的数量pointNum 要 +1。
回溯的时候,就将刚刚加入的分隔符. 删掉就可以了,pointNum也要-1。
代码如下:
for (int i = startIndex; i < s.size(); i++) {if (isValid(s, startIndex, i)) { // 判断 [startIndex,i] 这个区间的子串是否合法s.insert(s.begin() + i + 1 , '.'); // 在i的后面插入一个逗点pointNum++;backtracking(s, i + 2, pointNum); // 插入逗点之后下一个子串的起始位置为i+2pointNum--; // 回溯s.erase(s.begin() + i + 1); // 回溯删掉逗点} else break; // 不合法,直接结束本层循环
}
判断子串是否合法
最后就是在写一个判断段位是否是有效段位了。
主要考虑到如下三点:
- 段位以0为开头的数字不合法
- 段位里有非正整数字符不合法
- 段位如果大于255了不合法
代码如下:
// 判断字符串s在左闭又闭区间[start, end]所组成的数字是否合法
bool isValid(const string& s, int start, int end) {if (start > end) {return false;}if (s[start] == '0' && start != end) { // 0开头的数字不合法return false;}int num = 0;for (int i = start; i <= end; i++) {if (s[i] > '9' || s[i] < '0') { // 遇到非数字字符不合法return false;}num = num * 10 + (s[i] - '0');if (num > 255) { // 如果大于255了不合法return false;}}return true;
}
代码实现:
class Solution {
private:vector<string> result;// 记录结果// startIndex: 搜索的起始位置,pointNum:添加逗点的数量void backtracking(string& s, int startIndex, int pointNum) {if (pointNum == 3) { // 逗点数量为3时,分隔结束// 判断第四段子字符串是否合法,如果合法就放进result中if (isValid(s, startIndex, s.size() - 1)) {result.push_back(s);}return;}for (int i = startIndex; i < s.size(); i++) {if (isValid(s, startIndex, i)) { // 判断 [startIndex,i] 这个区间的子串是否合法s.insert(s.begin() + i + 1 , '.'); // 在i的后面插入一个逗点pointNum++;backtracking(s, i + 2, pointNum); // 插入逗点之后下一个子串的起始位置为i+2pointNum--; // 回溯s.erase(s.begin() + i + 1); // 回溯删掉逗点} else break; // 不合法,直接结束本层循环}}// 判断字符串s在左闭又闭区间[start, end]所组成的数字是否合法bool isValid(const string& s, int start, int end) {if (start > end) {return false;}if (s[start] == '0' && start != end) { // 0开头的数字不合法return false;}int num = 0;for (int i = start; i <= end; i++) {if (s[i] > '9' || s[i] < '0') { // 遇到非数字字符不合法return false;}num = num * 10 + (s[i] - '0');if (num > 255) { // 如果大于255了不合法return false;}}return true;}
public:vector<string> restoreIpAddresses(string s) {result.clear();if (s.size() < 4 || s.size() > 12) return result; // 算是剪枝了backtracking(s, 0, 0);return result;}
};
详细解析:
思路视频
代码实现文章
78 子集(medium)
给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的
子集(幂集)。
解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。
思路:回溯法,区别于组合和分割的是组合问题和分割问题都是收集树的叶子节点,而子集问题是找树的所有节点!
代码实现:
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& nums, int startIndex) {result.push_back(path); // 收集子集,要放在终止添加的上面,否则会漏掉自己if (startIndex >= nums.size()) { // 终止条件可以不加return;}for (int i = startIndex; i < nums.size(); i++) {path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();}}
public:vector<vector<int>> subsets(vector<int>& nums) {result.clear();path.clear();backtracking(nums, 0);return result;}
};
详细解析:
思路视频
代码实现文章
90 子集II(medium)
给你一个整数数组 nums ,其中可能包含重复元素,请你返回该数组所有可能的
子集(幂集)。
解集 不能 包含重复的子集。返回的解集中,子集可以按 任意顺序 排列。
思路:回溯法+组合总和2去重的技巧
代码实现1(used数组去重):
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& nums, int startIndex, vector<bool>& used) {result.push_back(path);for (int i = startIndex; i < nums.size(); i++) {// used[i - 1] == true,说明同一树枝candidates[i - 1]使用过// used[i - 1] == false,说明同一树层candidates[i - 1]使用过// 而我们要对同一树层使用过的元素进行跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}path.push_back(nums[i]);used[i] = true;backtracking(nums, i + 1, used);used[i] = false;path.pop_back();}}public:vector<vector<int>> subsetsWithDup(vector<int>& nums) {result.clear();path.clear();vector<bool> used(nums.size(), false);sort(nums.begin(), nums.end()); // 去重需要排序backtracking(nums, 0, used);return result;}
};
代码实现2(startIndex去重【不适用于排列】):
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& nums, int startIndex) {result.push_back(path);for (int i = startIndex; i < nums.size(); i++) {// 而我们要对同一树层使用过的元素进行跳过if (i > startIndex && nums[i] == nums[i - 1] ) { // 注意这里使用i > startIndexcontinue;}path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();}}public:vector<vector<int>> subsetsWithDup(vector<int>& nums) {result.clear();path.clear();sort(nums.begin(), nums.end()); // 去重需要排序backtracking(nums, 0);return result;}
};
代码实现3(使用set去重):
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& nums, int startIndex) {result.push_back(path);unordered_set<int> uset;for (int i = startIndex; i < nums.size(); i++) {if (uset.find(nums[i]) != uset.end()) {continue;}uset.insert(nums[i]);path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();}}public:vector<vector<int>> subsetsWithDup(vector<int>& nums) {result.clear();path.clear();sort(nums.begin(), nums.end()); // 去重需要排序backtracking(nums, 0);return result;}
};
详细解析:
思路视频
代码实现文章