隐私计算实训营学习二:隐私计算开源如何助力数据要素流通

文章目录

  • 一、数据要素流转与数据内外循环
  • 二、数据外循环中的信任焦虑
  • 三、数据要素流通对隐私计算的期望
  • 四、隐私计算开源助力数据要素流通

一、数据要素流转与数据内外循环

数据要素流转过程(从数据采集加工->到数据价值释放): 链路主要包括采集、存储、加工、使用、提供、传输。
内循环: 数据持有方在自己的运维管控域内对自己的数据使用和安全拥有全责。
外循环: 数据要素离开了持有方管控域,在使用方运维域,持有方依然拥有管控需求和责任,数据外循环是构建数据要素市场的核心,通过外循环数据提供方与使用方都可以获得收益。

  1. 数据提供方收益:新增长点、资产入表、数据资本化。
  2. 数据使用方收益:业务提效、运营降本、扩大营收。
    在这里插入图片描述

二、数据外循环中的信任焦虑

构建数据要素市场关键:需要有足够的数据提供方加入->才会有足够多数据->数据才会呈现多样性->吸引更多数据使用方加入->数据价值变现。 这是一个理想的良性循环。

信任焦虑: 不可信内部人员、不按约定使用、用户隐私泄露。

信任焦虑的解决方案:从主体信任到技术信任: 信任本质上是对不确定性和复杂性的依赖,从主体信任到技术信任,基于安全可信的技术信任体系,是支撑全行业数据要素安全可控流转的基础。

数据要素流通的技术信任体系: 控制面以区块链/可信计算为核心支撑技术构建数据使用权跨域管控层;数据面以隐私计算为核心支撑技术构建密态数联网,包括密态枢纽与密态管道。
在这里插入图片描述
技术信任需要完备的信任链:
运维权限最小化: 只允许预期内的行为可以执行;
完备的信任链: 从信任根、硬件平台、操作系统到应用系统整个链路的可信认证;
远程验证: 能够远程验证云上运行环境,甚至执行环境安全隔离;
可信安全模块: 使用基于硬件的可信安全模块
在这里插入图片描述

三、数据要素流通对隐私计算的期望

1、隐私计算内涵在扩大: 原始数据不出域,数据可用不可见、数据使用可控可计量、数据可算不可识。
2、隐私计算产品需要通用的安全分级和评测方式。
3、隐私计算需要通过开源降低门槛促进数据安全流通: 让更多企业轻松使用隐私计算技术、让技术产品的安全可信性更透明、促进数据要素流转中事实标准的发展。

四、隐私计算开源助力数据要素流通

隐语SecretFlow: 其以安全、开放为核心设计理念,支持MPC、FL、TEE 等主流隐私计算技术,融合产学研生态共创能力,助力隐私计算更广泛应用到AI、数据分析等场景中,解决隐私保护和数据孤岛等行业痛点。
优点: 统一架构、原生应用、开放拓展、性能卓越。
在这里插入图片描述
隐语开源经过多轮技术验证:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/759433.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯单片机快速开发笔记——串口通信

一、原理分析 二、思维导图 三、示例框架 #include <STC15F2K60S2.H> #include "HC573.h"void UartInit(void) //9600bps12.000MHz {SCON 0x50; //8位数据,可变波特率AUXR | 0x01; //串口1选择定时器2为波特率发生器AUXR & 0xFB; //定时器时钟12T模式…

应急响应靶机训练-Web3题解

前言 接上文&#xff0c;应急响应靶机训练-Web3。 前来挑战&#xff01;应急响应靶机训练-Web3 题解 首先登录用户administrator 寻找隐藏用户 找到隐藏用户hack6618$ 然后去找apache的日志文件 分析得出两个IP地址 192.168.75.129 192.168.75.130 然后更换hack6618$的…

Python 深度学习第二版(GPT 重译)(二)

四、入门神经网络&#xff1a;分类和回归 本章涵盖 您的第一个真实世界机器学习工作流示例 处理矢量数据上的分类问题 处理矢量数据上的连续回归问题 本章旨在帮助您开始使用神经网络解决实际问题。您将巩固从第二章和第三章中获得的知识&#xff0c;并将所学应用于三个新…

Flink RocksDB状态后端优化总结

截至当前&#xff0c;Flink 作业的状态后端仍然只有 Memory、FileSystem 和 RocksDB 三种可选&#xff0c;且 RocksDB 是状态数据量较大&#xff08;GB 到 TB 级别&#xff09;时的唯一选择。RocksDB 的性能发挥非常仰赖调优&#xff0c;如果全部采用默认配置&#xff0c;读写性…

sheng的学习笔记-AI-Inception network

目录&#xff1a;sheng的学习笔记-AI目录-CSDN博客 基础知识 构建卷积层时&#xff0c;你要决定过滤器的大小究竟是11&#xff08;原来是13&#xff0c;猜测为口误&#xff09;&#xff0c;33还是55&#xff0c;或者要不要添加池化层。而Inception网络的作用就是代替你来决定&…

智慧安全:守护智慧城市的安全屏障

随着信息技术的迅猛发展&#xff0c;智慧城市已成为现代城市发展的重要方向。智慧城市通过集成应用先进的信息通信技术&#xff0c;实现城市管理、服务、运行的智能化&#xff0c;为城市的可持续发展注入了新的活力。然而&#xff0c;在智慧城市的建设过程中&#xff0c;安全问…

在windows上安装Jenkins

jenkins安装 下载jenkins 官网&#xff1a;Jenkins download and deployment 官方文档说明&#xff1a;Jenkins User Documentation 安装jenkins1.点击下载好的安装包&#xff0c;点击Next 2.选择一个安装路径 如果系统是windows家庭版打不开策略就创建一个txt文件&#xff0c…

漏洞发现-漏扫项目篇Poc开发Yaml语法反链判断不回显检测Yaml生成

知识点 1、Xray&Afrog-Poc开发-环境配置&编写流程 2、Xray-Poc开发-数据回显&RCE不回显&实验室 3、Afrog-Poc开发-数据回显&RCE不回显&JDNI注入 章节点&#xff1a; 漏洞发现-Web&框架组件&中间件&APP&小程序&系统 扫描项目-综合…

28-5 文件上传漏洞 - 图片马

一、文件内容检测 解析漏洞定义 控制文件是否被当做后端脚本处理 二、图片马绕过 图片马;在图片中包含一句话木马。利用解析漏洞如.htaccess 或文件包含漏洞,对图片马进行解析,执行其中的恶意代码。优势在于可以绕过多种防护机制。 三、图片马制作方法: # 一句话马示例…

数据结构与算法4-冒泡排序

文章目录 1. 认识冒泡排序2. 图示2.1 图示12.2 图示2 3. 代码 1. 认识冒泡排序 双层for循环&#xff0c;每次选出最大的数“浮”到数组的最后面&#xff1b;时间复杂度O( n 2 n^2 n2)&#xff0c;空间复杂度O(1);重复地遍历待排序的数列&#xff0c;一次比较两个元素&#xff…

利用 Claude 3 on Amazon Bedrock 和 Streamlit 的“终极组合”,开发智能对话体验

概述 通过本文&#xff0c;您将学会如何利用 Streamlit 框架快速搭建前端交互界面。该界面将集成图像上传功能&#xff0c;让用户可以方便地提交待处理图片。在后端&#xff0c;我们将借助 Amazon Bedrock 的 Message API&#xff0c;调用 Claude 3 家族中的 Sonnet 模型对图像…

OpenWRT+zeroTier旁路由组网

前言 我之前写过一篇文章&#xff0c;探究了zeroTier的最基础的玩法&#xff0c;那篇文章结尾我提到了使用zeroTier虽然实现组网了&#xff0c;但是我只能访问局域网中制定的设备&#xff0c;局域网中其他设备无法访问&#xff0c;这篇文章我又研究了一套方案openwrtzeroTier旁…

怎么理解面向对象?一文带你全面理解

文章目录 1、类和对象&#xff08;1&#xff09;面向过程和面向对象初步认识&#xff08;2&#xff09;类的引入&#xff08;3&#xff09;类的定义&#xff08;4&#xff09;类的访问限定符及封装4.1 访问限定符4.2 封装 &#xff08;5&#xff09;类的作用域&#xff08;6&am…

Jackson 2.x 系列【3】解析器 JsonParser

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Jackson 版本 2.17.0 源码地址&#xff1a;https://gitee.com/pearl-organization/study-seata-demo 文章目录 1. 前言2. 解析原理3. 案例演示3.1 创建 JsonParser3.2 解析3.3 读取3.4 测试 1. 前…

水果软件FL Studio 21 for mac 21.2.3.3586破解版的最新版本2024介绍安装

音乐是人类最美好的语言&#xff0c;它能够跨越国界、文化和语言&#xff0c;将人们紧密地联系在一起。在当今数字化时代&#xff0c;音乐创作已经不再是专业人士的专利&#xff0c;越来越多的音乐爱好者开始尝试自己动手制作音乐。而FL Studio21中文版编曲软件正是这样一个为你…

PyTorch 深度学习(GPT 重译)(五)

十二、通过指标和增强改进训练 本章涵盖 定义和计算精确率、召回率以及真/假阳性/阴性 使用 F1 分数与其他质量指标 平衡和增强数据以减少过拟合 使用 TensorBoard 绘制质量指标图 上一章的结束让我们陷入了困境。虽然我们能够将深度学习项目的机制放置好&#xff0c;但实…

故障诊断 | 一文解决,GRNN广义回归神经网络的故障诊断(Matlab)

文章目录 效果一览文章概述专栏介绍模型描述源码设计参考资料效果一览 文章概述 故障诊断 | 一文解决,GRNN广义回归神经网络的故障诊断(Matlab) 专栏介绍

TinTin Web3 Bounty 挑战杯开启,Sui 向你发出挑战邀请

以下文章来源于TinTinLand &#xff0c;作者TinTinLand。 2024 年开年最火的是什么&#xff1f; 对 Web3 来说&#xff0c;Bounty 任务应该是普通人获得行业“一杯羹”的重要捷径&#xff01; 通过深入学习各类 Web3 技术&#xff0c;凭借实战锻炼开发创新项目&#xff0c;就…

Linux CentOS 7.6安装mysql5.7.26详细保姆级教程

一、通过wget下载mysql安装包 1、下载 //进入home目录 cd /home //下载mysql压缩包 wget https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.26-linux-glibc2.12-x86_64.tar.gz //解压 tar -xvf mysql-5.7.26-linux-glibc2.12-x86_64.tar.gz //重命名文件夹 mv mys…

MongoDB系列之查询计划

概述 一个查询具体如何被执行的过程&#xff0c;称为查询计划。MongoDB采用自底向上的方式来构造查询计划&#xff0c;每一个查询计划&#xff08;query plan&#xff09;都会被分解为若干个有层次的阶段&#xff08;stage&#xff09;。整个查询计划最终会呈现出一颗多叉树。…