Apache Doris 2.1 核心特性 Variant 数据类型技术深度解析

在最新发布的 Apache Doris 2.1 新版本中,我们引入了全新的数据类型 Variant,对半结构化数据分析能力进行了全面增强。无需提前在表结构中定义具体的列,彻底改变了 Doris 过去基于 String、JSONB 等行存类型的存储和查询方式。为了让大家快速学习和使用 Doris Variant 数据类型,我们为大家提供了实操演示视频,详细展示使用方式和性能表现。

半结构化数据是一种灵活多变的数据形式,不受固定结构限制,无需事先定义固定的表结构,为数据存储和分析提供了强大的灵活性及便捷性。常见的半结构化数据包括 XML、JSON、日志文件等。半结构化数据被广泛应用于以下场景:

  • 电商平台可以利用半结构化数据来存储用户对产品的评价,这些评价包括文字、图片甚至视频。这种数据结构有助于进行复杂的情感分析和用户行为模式挖掘。

  • 移动应用利用半结构化数据记录用户行为数据,随着新功能的引入,用户行为的属性可能会发生改变。半结构化数据能够灵活适应这些变化,无需频繁修改数据库结构。

  • 车联网、物联网等场景可使用半结构化数据存储车辆传感器的实时信息,如速度、位置和油耗,提供高度灵活性以适应技术更新。这使得平台能够提供实时监控、故障预警和智能路线规划等服务,提升驾驶体验和车辆性能。

为应对半结构化数据的处理,Apache Doris 2.1 之前版本提供了两种解决方案:预定义表结构和直接将数据存储为 JSON 。虽然早期方案各有优势,但在解析性能、数据读取效率以及运维研发成本方面仍面临巨大的挑战。例如:将数据直接存储为 JSON 后,在查询时需要实时解析 JSON 数据 ,这将导致较高的 CPU/IO 消耗和查询延迟,尤其是在处理大量或复杂半结构化数据时,性能瓶颈尤为突出。此外,也由于缺乏预定义结构,查询优化将变得更加复杂,从而影响数据处理分析的效率。

全新 Variant 数据类型

在最新发布的 Apache Doris 2.1 新版本中,我们引入了全新的数据类型 Variant,对半结构化数据分析能力进行了全面增强。

Variant 数据类型支持存储半结构化数据,并支持存储包含不同数据类型(如整数、字符串、布尔值等)的复杂数据结构,无需提前在表结构中定义具体的列,彻底改变了 Doris 过去基于 String、JSONB 等行存类型的存储和查询方式。

Variant 类型擅长处理复杂多变的嵌套结构。在写入过程中,Variant 类型可以自动根据列的结构和类型推断列信息,并将其合并到现有表的 Schema 中,将 JSON 键及其对应的值灵活存储为动态子列。同时,一个表可以同时包含灵活的 Variant 对象列和预先定义类型的更严格的静态列,从而在数据存储、查询上提供了更大的灵活性,这种写入方式为 Schema On Write。除此之外,Variant 类型能够与 Doris 核心特性融合,利用列式存储、向量化引擎、优化器等技术,为用户带来极高性价比的查询性能及存储性能。

Variant 的引入,使得存储和查询性能上均有显著提升,相较于 JSON 类型,存储空间减少了约 65%,查询速度提升超 8 倍。

功能及使用介绍

建表:建表语法关键字variant

-- 无索引
CREATE TABLE IF NOT EXISTS ${table_name} (k BIGINT,v VARIANT
)
table_properties;-- 在v列创建bloom filter
CREATE TABLE IF NOT EXISTS ${table_name} (k BIGINT,v VARIANT
)
...
properties("replication_num" = "1", "bloom_filter_columns" = "v");

查询:通过[]访问子列,子列的类型同样为Variant类型

SELECT v["properties"]["title"] from ${table_name}

接下来,我们使用 Github Events 数据展示 Variant 的建表、导入、查询。下面是其中一条格式化后的数据。

{"id": "14186154924","type": "PushEvent","actor": {"id": 282080,"login": "brianchandotcom","display_login": "brianchandotcom","gravatar_id": "","url": "https://api.github.com/users/brianchandotcom","avatar_url": "https://avatars.githubusercontent.com/u/282080?"},"repo": {"id": 1920851,"name": "brianchandotcom/liferay-portal","url": "https://api.github.com/repos/brianchandotcom/liferay-portal"},"payload": {"push_id": 6027092734,"size": 4,"distinct_size": 4,"ref": "refs/heads/master","head": "91edd3c8c98c214155191feb852831ec535580ba","before": "abb58cc0db673a0bd5190000d2ff9c53bb51d04d","commits": [""]},"public": true,"created_at": "2020-11-13T18:00:00Z"
}

01 建表

  • 创建 3 个 Variant 类型的列, actorrepopayload
  • 创建表的同时创建 payload 列的倒排索引 idx_payload
  • USING INVERTED 指定索引类型是倒排索引,用于加速子列的条件过滤
  • PROPERTIES("parser" = "english") 指定采用english 分词
CREATE DATABASE test_variant;USE test_variant;CREATE TABLE IF NOT EXISTS github_events (id BIGINT NOT NULL,type VARCHAR(30) NULL,actor VARIANT NULL,repo VARIANT NULL,payload VARIANT NULL,public BOOLEAN NULL,created_at DATETIME NULL,INDEX idx_payload (`payload`) USING INVERTED PROPERTIES("parser" = "english") COMMENT 'inverted index for payload'
)
DUPLICATE KEY(`id`)
DISTRIBUTED BY HASH(id) BUCKETS 10
properties("replication_num" = "1");

需要注意的是: 在 Variant 列上创建索引,如果 Payload 的子列较多时,可能会造成索引列过多,影响写入性能。如果全部是等值查询,可以在 Variant 上构建布隆过滤器来加速等值过滤,与倒排索引相比,布隆过滤器的索引写入性能会有明显提升。同一个 Variant 列的分词属性是相同的,如果有不同的分词需求,那么可以创建多个 Variant 分别指定索引属性。

02 使用 Stream Load 导入

导入 gh_2022-11-07-3.json,该数据是 Github Events 一个小时的数据,格式化后的一行数据为:

wget http://doris-build-hk-1308700295.cos.ap-hongkong.myqcloud.com/regression/variant/gh_2022-11-07-3.jsoncurl --location-trusted -u root:  -T gh_2022-11-07-3.json -H "read_json_by_line:true" -H "format:json"  http://127.0.0.1:18148/api/test_variant/github_events/_strea
m_load{"TxnId": 2,"Label": "086fd46a-20e6-4487-becc-9b6ca80281bf","Comment": "","TwoPhaseCommit": "false","Status": "Success","Message": "OK","NumberTotalRows": 139325,"NumberLoadedRows": 139325,"NumberFilteredRows": 0,"NumberUnselectedRows": 0,"LoadBytes": 633782875,"LoadTimeMs": 7870,"BeginTxnTimeMs": 19,"StreamLoadPutTimeMs": 162,"ReadDataTimeMs": 2416,"WriteDataTimeMs": 7634,"CommitAndPublishTimeMs": 55
}

确认数据导入成功

-- 查看行数
mysql> select count() from github_events;
+----------+
| count(*) |
+----------+
|   139325 |
+----------+
1 row in set (0.25 sec)-- 随机看一条数据
mysql> select * from github_events limit 1;
+-------------+-----------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------+---------------------+
| id          | type      | actor                                                                                                                                                                                                                       | repo                                                                                                                                                     | payload                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | public | created_at          |
+-------------+-----------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------+---------------------+
| 25061821748 | PushEvent | {"gravatar_id":"","display_login":"jfrog-pipelie-intg","url":"https://api.github.com/users/jfrog-pipelie-intg","id":98024358,"login":"jfrog-pipelie-intg","avatar_url":"https://avatars.githubusercontent.com/u/98024358?"} | {"url":"https://api.github.com/repos/jfrog-pipelie-intg/jfinte2e_1667789956723_16","id":562683829,"name":"jfrog-pipelie-intg/jfinte2e_1667789956723_16"} | {"commits":[{"sha":"334433de436baa198024ef9f55f0647721bcd750","author":{"email":"98024358+jfrog-pipelie-intg@users.noreply.github.com","name":"jfrog-pipelie-intg"},"message":"commit message 10238493157623136117","distinct":true,"url":"https://api.github.com/repos/jfrog-pipelie-intg/jfinte2e_1667789956723_16/commits/334433de436baa198024ef9f55f0647721bcd750"}],"before":"f84a26792f44d54305ddd41b7e3a79d25b1a9568","head":"334433de436baa198024ef9f55f0647721bcd750","size":1,"push_id":11572649828,"ref":"refs/heads/test-notification-sent-branch-10238493157623136113","distinct_size":1} |      1 | 2022-11-07 11:00:00 |
+-------------+-----------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------+---------------------+
1 row in set (0.23 sec)

使用desc查看 Schema 信息,子列会在存储层自动扩展,并进行类型推导:

-- 未开启扩展列展示
mysql> desc github_events;
+------------+-------------+------+-------+---------+-------+
| Field      | Type        | Null | Key   | Default | Extra |
+------------+-------------+------+-------+---------+-------+
| id         | BIGINT      | No   | true  | NULL    |       |
| type       | VARCHAR(30) | Yes  | false | NULL    | NONE  |
| actor      | VARIANT     | Yes  | false | NULL    | NONE  |
| repo       | VARIANT     | Yes  | false | NULL    | NONE  |
| payload    | VARIANT     | Yes  | false | NULL    | NONE  |
| public     | BOOLEAN     | Yes  | false | NULL    | NONE  |
| created_at | DATETIME    | Yes  | false | NULL    | NONE  |
+------------+-------------+------+-------+---------+-------+
7 rows in set (0.01 sec)-- 开启Variant扩展列展示
mysql> set describe_extend_variant_column = true;
Query OK, 0 rows affected (0.01 sec)mysql> desc github_events;
+------------------------------------------------------------+------------+------+-------+---------+-------+
| Field                                                      | Type       | Null | Key   | Default | Extra |
+------------------------------------------------------------+------------+------+-------+---------+-------+
| id                                                         | BIGINT     | No   | true  | NULL    |       |
| type                                                       | VARCHAR(*) | Yes  | false | NULL    | NONE  |
| actor                                                      | VARIANT    | Yes  | false | NULL    | NONE  |
| actor.avatar_url                                           | TEXT       | Yes  | false | NULL    | NONE  |
| actor.display_login                                        | TEXT       | Yes  | false | NULL    | NONE  |
| actor.id                                                   | INT        | Yes  | false | NULL    | NONE  |
| actor.login                                                | TEXT       | Yes  | false | NULL    | NONE  |
| actor.url                                                  | TEXT       | Yes  | false | NULL    | NONE  |
| created_at                                                 | DATETIME   | Yes  | false | NULL    | NONE  |
| payload                                                    | VARIANT    | Yes  | false | NULL    | NONE  |
| payload.action                                             | TEXT       | Yes  | false | NULL    | NONE  |
| payload.before                                             | TEXT       | Yes  | false | NULL    | NONE  |
| payload.comment.author_association                         | TEXT       | Yes  | false | NULL    | NONE  |
| payload.comment.body                                       | TEXT       | Yes  | false | NULL    | NONE  |
....
+------------------------------------------------------------+------------+------+-------+---------+-------+
406 rows in set (0.07 sec)

desc 可以指定 Partition 查看某个 Partition 的 Schema, 语法如下:

DESCRIBE ${table_name} PARTITION ($partition_name);

03 查询

需要注意的是:在使用过滤和聚合等功能查询子列时,需对子列执行额外的 CAST 操作,以确保数据类型一致性。这是因为存储类型可能不固定,需要通过 SQL 的CAST表达式来统一数据类型。例如,可以使用 SELECT * FROM tbl WHERE CAST(var['title'] AS TEXT) MATCH 'hello world' 来进行查询。

以下简化的示例说明如何使用 Variant 进行查询,下面是典型的三个查询场景:

1. 从 github_events 表中获取 Top5 Star 数的代码库

mysql> SELECT->     cast(repo["name"] as text) as repo_name, count() AS stars-> FROM github_events-> WHERE type = 'WatchEvent'-> GROUP BY repo_name-> ORDER BY stars DESC LIMIT 5;
+--------------------------+-------+
| repo_name                | stars |
+--------------------------+-------+
| aplus-framework/app      |    78 |
| lensterxyz/lenster       |    77 |
| aplus-framework/database |    46 |
| stashapp/stash           |    42 |
| aplus-framework/image    |    34 |
+--------------------------+-------+
5 rows in set (0.03 sec)

2. 获取评论中包含doris的数量

mysql> SELECT->     count() FROM github_events->     WHERE cast(payload['comment']['body'] as text) MATCH 'doris';
+---------+
| count() |
+---------+
|       3 |
+---------+
1 row in set (0.04 sec)

3. 查询 Comments 最多的 Issue 号以及对应的库

mysql> SELECT ->   cast(repo["name"] as string) as repo_name, ->   cast(payload["issue"]["number"] as int) as issue_number, ->   count() AS comments, ->   count(->     distinct cast(actor["login"] as string)->   ) AS authors -> FROM  github_events -> WHERE type = 'IssueCommentEvent' AND (cast(payload["action"] as string) = 'created') AND (cast(payload["issue"]["number"] as int) > 10) -> GROUP BY repo_name, issue_number -> HAVING authors >= 4-> ORDER BY comments DESC, repo_name-> LIMIT 50;
+--------------------------------------+--------------+----------+---------+
| repo_name                            | issue_number | comments | authors |
+--------------------------------------+--------------+----------+---------+
| facebook/react-native                |        35228 |        5 |       4 |
| swsnu/swppfall2022-team4             |           27 |        5 |       4 |
| belgattitude/nextjs-monorepo-example |         2865 |        4 |       4 |
+--------------------------------------+--------------+----------+---------+
3 rows in set (0.03 sec)

04 注意事项

Variant 动态列与预定义静态列在效率上几乎相当。然而,对于处理类似日志数据的情况,经常需要动态添加字段,比如在 Kubernetes 中的容器标签。尽管 Variant 动态列提供了灵活性,但在写入时解析 JSON 和类型推断会增加额外的开销。

为了在处理大量动态属性和保持高效性之间取得一个平衡,我们建议在保持列数在 1000 以下的范围内。保持较少的列数有助于减少写入过程中的解析和类型推断开销,从而提高写入性能。

我们建议尽可能保证字段的类型一致性。这是因为 Doris 在处理数据时会自动进行兼容类型转换,将不同数据类型的字段进行统一处理。当字段无法进行兼容类型转换时,Doris 会将其统一转换为 JSONB 类型,JSONB 列的性能与 int、text 等列性能会有所退化。

Variant 性能对比

为了验证引入 Variant 数据类型后,在存储以及查询上所带来的优势,我们基于 Clickbench 数据对预定义静态列、Variant 数据类型、JSON 数据类型进行了测试,测试环境为一台配置为 16 核 64GB 内存的阿里云 ECS 实例,配备了 1TB ESSD 云盘,测试结果如下:

01 存储空间

通过下方存储空间占用情况可知,Variant 类型的存储空间基本与预定义静态列相当;而相比于 JSON 类型的存储, Variant 类型的存储空间减少了约65%, 仅占JSON类型存储空间1/3。在一些低基数场景,由于列存的优势空间占用减少会更加明显。

2.1-comparied-to-Json.png

02 查询性能

我们基于 Clickbench 43 个 SQL 进行了测试,如下表可知,Variant 类型与预定义静态列的查询性能差异在 10% 左右;而对于 JSON 类型来说,Variant 类型的查询速度相比于 JSON 类型提升了 8 倍以上(由于 I/O 原因,JSONB 类型的 冷查询大部分超时)。

2.1-comparied-to-Json-2.png

Variant 的设计实现

01 写入与类型推断

Apache Doris 写入流程是在 Memtable 中进行排序、合并并生成 Segment 文件。与之相同的是, Variant 的写入核心也是在 Memtable 中对相同的 JSON 键进行类型推导和合并,最后生成一颗前缀树。如下图所示,树上记录了每个 JSON Field 的类型信息以及 Column 信息,然后将同列的所有类型信息合并成最小公共类型,生成列并编码成 Doris 中的存储格式追加写入到 Segment 中。

每个 Segment 文件不仅包含了经过类型编码压缩后的数据,还额外记录了动态生成列的元信息。这种设计确保了数据的完整性和可查询性,同时也提升了存储效率。与传统的原始文本存储方式相比,通过在内存中进行类型推导和合并,Variant 类型显著减少了磁盘上的存储空间占用,大幅增强了数据的压缩效果。

Doris Variant写入与类型推断.png

02 列变更(加列、列类型变更)

在写入过程中,会将上述前缀树所有叶子节点元信息和数据追加到 Segment 文件中,并对 Rowset 的元信息进行合并。以下为合并方式示例:

Doris 列变更.png

最终 ,Rowset 将使用最小公共列模式(Least Common Column Schema,即子列最多、子列类型是所有 Segment 最小公共类型的 Schema )作为合并后的元数据,从而实现列动态扩展、类型变更。因此,对于 Variant 来说,其存储的 Schema 可以认为由数据驱动产生,与 Doris 中传统的 Schema Change 流程不同,具备更大的灵活性。下图展示了类型变更的方向(只支持按箭头所指方向进行变更,JSONB 类型是所有类型的公共类型):

Doris Variant Rowset 元信息合并.png

03 索引以及查询加速

Variant 中的叶子节点是以列存的方式存储在 Segment 文件中,与静态预定义的列存储格式完全相同。因此,可以直接利用预定义列的优化技术,例如字典编码、向量化和索引(ZoneMap、倒排、BloomFilter 等)进行查询加速。由于相同的列在不同文件中可能具有不同的类型,因此在查询时需要用户指定一个类型作为 hint,例如下面的查询示例:

 -- var['title']是访问var这个variant字段下的title子列SELECT * FROM tbl where CAST(var['titile'] as text) MATCH "hello world"-- 如果var上有BloomFilter, 则利用BloomFilter加速等值过滤SELECT * FROM tbl where CAST(var['id'] as bigint) = 1010101

在处理谓词的时候, 会将此类谓词下推到存储层(Segment), 并在存储层判断存储类型是否与CAST操作的目标类型一致。 如果类型一致,将使用更高效的谓词过滤机制进行处理。这样可以减少不必要的数据读取和转换操作,从而提升查询性能。

04 稀疏列存储优化

针对 JSON 列特别稀疏的场景, 例如以下数据:

{"a":[1], "b":2, "c":3, "x_1" : 1,"x_2": "3"}
{"a":1, "b":2, "c":3, "x_1" : 1,"x_2": "3"}
{"a":4, "b":5, "c":6, "x_3" : 1,"x_4": "3"}
{"a":7, "b":8, "c":9, "x_5" : 1,"x_6": "3"}
...

a, b, c 较为稠密,几乎每行都有该字段, x_?列则特别稀疏(sparse),只有个别行有该字段。如果每列都进行列式存储,将会造成较大的存储层压力,并导致 Meta 急剧膨胀。

在该场景中,将数据导入到 Doris 时,系统会根据 Column 中 Null 值的占比,来判断列的稠密和稀疏程度。对于较为稀疏的列(Null 占比高),存储层将其打包成 JSONB 编码,并存储在单独列中。列存结构如下所示:

稀疏列存储优化.png

当启用稀疏列存储优化后,可降低存储 Meta 以及 Compaction 的压力,并提高了 Variant 的灵活性。 稀疏列的查询方式与其他列完全一致,用户不必关心实现。

用户案例

观测云是国内领先的可观测性平台,在过去使用 Elasticsearch 来存储采集到的日志数据和用户行为数据。在面对大量的用户自定义字段时,Elasticsearch 对于 Schemaless 支持有限、原有的 Dynamic Mapping 会频繁造成字段类型冲突导致数据丢失,严重依赖人工介入进行手动处理。同时 Elasticsearch 的写入占用过多资源、面对海量数据时的低聚合性能表现,这些不足严重限制了自身业务的发展。

为了应对这一系列挑战,观测云选择基于与飞轮科技进行联合共建,基于 Apache Doris 对原有架构进行升级,打造了新一代可观测性解决方案。通过引入倒排索引、Variant 数据类型以及相关优化项,极大地提升了日志数据的查询速度,并且机器成本得到极大幅度节省,同时解决了在使用 Elasticsearch 时遇到的一系列痛点,具体包括:

  • 彻底解决了 Elasticsearch 中动态映射的问题。相比于 Elasticsearch 的动态 Schema 和类型固定的限制,Doris 使用 Variant 实现了 Partition 区级别的 Schema 变更,使得类型处理更加高效和灵活。此外,Doris 没有列数上限的限制,从而更好地满足了 Schemafree 的需求。
  • 大幅降低写入操作的资源消耗,显著降低了写入时的 CPU 占用。
  • 在处理海量数据的聚合查询时,借助倒排索引和查询优化技术,Doris 能够更快速地进行复杂的聚合查询,提供更高效的数据分析能力;

在进行架构的升级后,观测云机器成本降幅高达 70%。在更少的机器数量下,整体查询性能提升了 2 倍以上,简单查询性能提升了超过 4 倍,仅使用 Elasticsearch 的 1/3 成本、获得 2~4 倍的性能提升,整体性价比提升了近 10 倍。不仅提高了观测云的运营效率,还为客户提供了更高效、经济的服务体验。

结束语

在 Apache Doris 2.1 版本发布之前,Variant 数据类型已向用户开放 POC 测试,并取得了许多用户的积极反馈和满意的测试结果。而在 Apache Doris 2.1 版本正式发版之时,Variant 数据类型这一特性已经具备了生产可用的能力,推荐有需求的用户使用。

未来,我们将基于 Variant 数据实现更轻量级的类型变化,为用户在调整和演进数据模型时提供更便捷、可靠的支持,以满足不断演变的数据需求,前文提到的列变更(加列、列类型变更)同样适用于之后的轻量级类型变化。同时,我们也计划引入更友好的数据导入解决方案,包括采用严格模式、支持更丰富的数据模型等,旨在满足不同用户群体的广泛需求。此外,我们将持续优化 Variant 数据类型,为用户带来更卓越的半结构化数据处理和查询体验。

最后,欢迎有需求的同学能够积极使用并反馈建议,并前往 Doris 问答论坛 进行交流互动~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/754666.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在IDEA中设置使用鼠标滚轮控制字体大小

IDEA是我们常用的程序编程工具,有时为了方便,我们需要随时的调整字体的大小 本篇文章我使用了两种方式来设置IDEA中的字体大小 方式一:使用传统的方式来设置 首先在IDEA顶部的菜单栏中选择“file”菜单 然后在“file”菜单中选择“Setting…

Gitlab-runner注册与配置

文章目录 概要操作流程获取HTTPS证书上传证书修改gitlab-runner dns配置文件gitlab-runner 注册 概要 本文主要介绍了Gitlab-runner在内网环境注册到gitlab的操作方式。内网环境如下: 1、gitlab-runner由docker镜像部署; 2、gitlab部署与内网&#xff0…

3D Tiles语义分割流水线

Dylan Chua 和 Anne Lee 开发了一个处理管线,用于对 3D Tiles 中包含的 GL 传输格式 (glTF) 模型进行语义分割。 该管道读取并遍历 3D Tileset,以输出包含元数据的经过转换的划分对象集。 该项目为 3D 语义分割器提供了最小可行产品,作为各种…

视频技术2:把rtsp转为各种格式,包括webrtc

前题是启动ABLMediaServer,把ini里的hls_enable1 1、添加rtsp到视频服务器 http://127.0.0.1:7088/index/api/addStreamProxy?secret035c73f7-bb6b-4889-a715-d9eb2d1925cc&vhost_defaultVhost_&appMedia&streamCamera_00001&enable_hls1&ur…

【数据结构与算法】设计循环队列

🧑‍🎓个人主页:简 料 🏆所属专栏:C 🏆个人社区:越努力越幸运社区 🏆简 介:简料简料,简单有料~在校大学生一枚,专注C/C/GO的干货分…

2022年第十三届蓝桥杯比赛Java B组 【全部真题答案解析-第一部分】

最近回顾了Java B组的试题,深有感触:脑子长时间不用会锈住,很可怕。 兄弟们,都给我从被窝里爬起来,赶紧开始卷!!! 2022年第十三届蓝桥杯Java B组(第一部分 A~F题) 目录 一、填空题 …

详解基于快速排序算法的qsort的模拟实现

目录 1. 快速排序 1.1 快速排序理论分析 1.2 快速排序的模拟实现 2. qsort的模拟实现 2.1 qsort的理论分析 2.2 qsort的模拟实现 qsort函数是基于快速排序思想设计的可以针对任意数据类型的c语言函数。要对qsort进行模拟实现,首先就要理解快速排序。 1. 快…

【数据结构】堆的创建

文章目录 一、堆的概念及结构1、什么是堆2、堆的性质3、堆的结构及分类 二、堆的创建1、堆向下调整算法2、堆向上调整算法3、堆的创建(向上调整算法) 一、堆的概念及结构 1、什么是堆 堆就是以二叉树的顺序存储方式来存储元素,同时又要满足父…

智慧城市中的智慧生活:便捷、舒适与高效

目录 一、智慧城市中的智慧生活概述 二、智慧生活带来的便捷性 1、智慧交通的便捷出行 2、智慧购物的轻松体验 3、智慧政务的一站式服务 三、智慧生活带来的舒适性 1、智慧环境的绿色宜居 2、智慧医疗的健康保障 3、智慧教育的均衡发展 四、智慧生活带来的高效性 1、…

CSS案例-5.margin产品模块练习

效果1 相关数据 整体长:298px,高:415px 效果2 知识点 外边距margin 块级盒子水平居中 条件: 必须有宽度左右外边距设为auto 三种写法: margin-left:auto;margin-right:auto&…

高架学习笔记之信息安全基础

目录 一、信息安全基础 1.1. 概念 1.2. 信息存储安全 1.3. 网络安全 二、信息安全系统的组成框架 三、信息加解密技术和数字签名 四、访问控制技术 五、信息安全的保障体系与评估方法 5.1. 计算机信息系统安全保护等级 5.2. 安全风险管理 一、信息安全基础 1.1. 概念 …

linux安装WordPress问题汇总,老是提示无法连接到FTP服务器解决方案

最近在做一些建站相关的事情,遇到一些大大小小的问题都整理在这里 1.数据库密码和端口,千万要复杂一点,不要使用默认的3306端口 2.wordpress算是一个php应用吧,所以安装流程一般是 apache http/nginx——php——mysql——ftp &…

MQTT和Modbus的物联网网关协议区别分析

MQTT和Modbus的物联网网关协议区别分析 MQTT(Message Queuing Telemetry Transport)与Modbus是两种广泛应用在物联网环境中的通信协议,它们各自具有独特的优势和适用场景,下面将从多个维度对这两种网关协议进行详细区别分析。 首…

win10 使用 IIS 搭建 FTP

0. 背景 首先描述一下需求,大概情况就是,视频文件是存储在笔记本电脑里面,然后偶尔需要投屏到电视上。之前考虑过是否可以通过U盘拷贝的方式,后来发现不行,这样太局限了,需要先明确可能用到的教程&#xf…

汽车功能安全整体方法

摘 要 ISO26262道路车辆功能安全标准已经制定实践了多年,主要目标是应对车辆的电子和电气(E/E)系统失效。该方法践行至今,有些系统功能安全方法已经成熟,例如电池管理系统(BMS),并且…

Latex插入pdf图片,去除空白部分

目录 参考链接: 流程: 参考链接: ​科研锦囊之Latex-如何插入图片、表格、参考文献 http://t.csdnimg.cn/vpSJ3 流程: Latex的图片插入支持PDF文件,这里笔者建议都使用PDF文件进行图片的插入,因为PDF作…

基于spring boot实现接口管理平台

数据库结构 /* Navicat MySQL Data TransferSource Server : localhost_3306 Source Server Version : 50724 Source Host : localhost:3306 Source Database : interfaceTarget Server Type : MYSQL Target Server Version : 50724 File Encoding…

Android14之HIDL报错:Invalid sparse file format at header magic(一百九十六)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

学习笔记Day8:GEO数据挖掘-基因表达芯片

GEO数据挖掘 数据库:GEO、NHANCE、TCGA、ICGC、CCLE、SEER等 数据类型:基因表达芯片、转录组、单细胞、突变、甲基化、拷贝数变异等等 常见图表 表达矩阵 一行为一个基因,一列为一个样本,内容是基因表达量。 热图 输入数据…

Java语言: JVM

1.1 内存管理 1.1.1 JVM内存区域 编号 名字 功能 备注 1 堆 主要用于存放新创建的对象 (所有对象都在这里分配内存) jdk1.8之后永久代被替换成为了元空间(Metaspace) 2 方法区(加、常、静、即) 被虚拟机加载的类信息(版本、字段、方法、接口…