03|提示工程(下):用思维链和思维树提升模型思考质量

什么是 Chain of Thought

CoT这个概念来源于学术界,是谷歌大脑的Jason Wei等人于2022年在论文《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models(自我一致性提升了语言模型中的思维链推理能力)》中提出来的概念。它提出,如果生成一系列的中间推理步骤,就能够显著提高大型语言模型进行复杂推理的能力。

Few-Shot CoT

Few-Shot CoT 简单的在提示中提供了一些链式思考示例(Chain-of-Thought Prompting),足够大的语言模型的推理能力就能够被增强。
image.png

假设我们正在开发一个AI花店助手,它的任务是帮助用户选择他们想要的花,并生成一个销售列表。在这个过程中,我们可以使用CoT来引导AI的推理过程。

  1. 问题理解:首先,AI需要理解用户的需求。例如,用户可能会说:“今天要参加朋友的生日Party,想送束花祝福她。”我们可以给AI一个提示模板,里面包含示例:“遇到XX问题,我先看自己有没有相关知识,有的话,就提供答案;没有,就调用工具搜索,有了知识后再试图解决。”—— 这就是给了AI一个思维链的示例。
  2. 信息搜索:接下来,AI需要搜索相关信息。例如,它可能需要查找哪些花最适合生日派对。
  3. 决策制定:基于收集到的信息,AI需要制定一个决策。我们可以通过思维链让他详细思考决策的流程,先做什么后做什么。例如,我们可以给它一个示例:“遇到生日派对送花的情况,我先考虑用户的需求,然后查看鲜花的库存,最后决定推荐一些玫瑰和百合,因为这些花通常适合生日派对。”—— 那么有了生日派对这个场景做示例,大模型就能把类似的思维流程运用到其它场景
  4. 生成销售列表:最后,AI使用OutputParser生成一个销售列表,包括推荐的花和价格。

Zero-Shot CoT

下面的这两个CoT提示模板的例子,来自于Google Research和东京大学的论文《大语言模型是零样本推理者》。
在Zero-Shot CoT中,你只要简单地告诉模型“让我们一步步的思考(Let’s think step by step)”,
image.png

Chain of Thought 实战

项目需求:在这个示例中,你正在开发一个AI运营助手,我们要展示AI如何根据用户的需求推理和生成答案。然后,AI根据当前的用户请求进行推理,提供了具体的花卉建议并解释了为什么选择这些建议。

CoT的模板设计

针对这个聊天机器人的需求,我设计了下面这样的思维链模板。

  • 作为一个为花店电商公司工作的AI助手,我的目标是帮助客户根据他们的喜好做出明智的决定。
  • 我会按部就班的思考,先理解客户的需求,然后考虑各种鲜花的涵义,最后根据这个需求,给出我的推荐。
  • 同时,我也会向客户解释我这样推荐的原因。

示例 1:
人类:我想找一种象征爱情的花。
AI:首先,我理解你正在寻找一种可以象征爱情的花。在许多文化中,红玫瑰被视为爱情的象征,这是因为它们的红色通常与热情和浓烈的感情联系在一起。因此,考虑到这一点,我会推荐红玫瑰。红玫瑰不仅能够象征爱情,同时也可以传达出强烈的感情,这是你在寻找的

# 设置环境变量和API密钥
import os
os.environ["OPENAI_API_KEY"] = '你的OpenAI API Key'# 创建聊天模型
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(temperature=0)# 设定 AI 的角色和目标
role_template = "你是一个为花店电商公司工作的AI助手, 你的目标是帮助客户根据他们的喜好做出明智的决定"# CoT 的关键部分,AI 解释推理过程,并加入一些先前的对话示例(Few-Shot Learning)
cot_template = """
作为一个为花店电商公司工作的AI助手,我的目标是帮助客户根据他们的喜好做出明智的决定。 我会按部就班的思考,先理解客户的需求,然后考虑各种鲜花的涵义,最后根据这个需求,给出我的推荐。
同时,我也会向客户解释我这样推荐的原因。示例 1:人类:我想找一种象征爱情的花。AI:首先,我理解你正在寻找一种可以象征爱情的花。在许多文化中,红玫瑰被视为爱情的象征,这是因为它们的红色通常与热情和浓烈的感情联系在一起。因此,考虑到这一点,我会推荐红玫瑰。红玫瑰不仅能够象征爱情,同时也可以传达出强烈的感情,这是你在寻找的。示例 2:人类:我想要一些独特和奇特的花。AI:从你的需求中,我理解你想要的是独一无二和引人注目的花朵。兰花是一种非常独特并且颜色鲜艳的花,它们在世界上的许多地方都被视为奢侈品和美的象征。因此,我建议你考虑兰花。选择兰花可以满足你对独特和奇特的要求,而且,兰花的美丽和它们所代表的力量和奢侈也可能会吸引你。
"""
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
system_prompt_role = SystemMessagePromptTemplate.from_template(role_template)
system_prompt_cot = SystemMessagePromptTemplate.from_template(cot_template)# 用户的询问
human_template = "{human_input}"
human_prompt = HumanMessagePromptTemplate.from_template(human_template)# 将以上所有信息结合为一个聊天提示
chat_prompt = ChatPromptTemplate.from_messages([system_prompt_role, system_prompt_cot, human_prompt])prompt = chat_prompt.format_prompt(human_input="我想为我的女朋友购买一些花。她喜欢粉色和紫色。你有什么建议吗?").to_messages()# 接收用户的询问,返回回答结果
response = llm(prompt)
print(response)

关键在于system_prompt_role, system_prompt_cot。还可以设置进去

Tree of Thought

CoT这种思想,为大模型带来了更好的答案,然而,对于需要探索或预判战略的复杂任务来说,传统或简单的提示技巧是不够的。基于CoT的思想,Yao和Long等人几乎在同一时间在论文《思维之树:使用大型语言模型进行深思熟虑的问题解决》和《大型语言模型指导的思维之树》中,进一步提出了思维树(Tree of Thoughts,ToT)框架,该框架基于思维链提示进行了总结,引导语言模型探索把思维作为中间步骤来解决通用问题。
ToT是一种解决复杂问题的框架,它在需要多步骤推理的任务中,引导语言模型搜索一棵由连贯的语言序列(解决问题的中间步骤)组成的思维树,而不是简单地生成一个答案。ToT框架的核心思想是:让模型生成和评估其思维的能力,并将其与搜索算法(如广度优先搜索和深度优先搜索)结合起来,进行系统性地探索和验证。
image.png

应用ToT的思想,给出一个鲜花运营方面的示例:
假设一个顾客在鲜花网站上询问:“我想为我的妻子购买一束鲜花,但我不确定应该选择哪种鲜花。她喜欢淡雅的颜色和花香。”
AI(使用ToT框架):
思维步骤1:理解顾客的需求。
顾客想为妻子购买鲜花。
顾客的妻子喜欢淡雅的颜色和花香。

思维步骤2:考虑可能的鲜花选择。
候选1:百合,因为它有淡雅的颜色和花香。
候选2:玫瑰,选择淡粉色或白色,它们通常有花香。
候选3:紫罗兰,它有淡雅的颜色和花香。
候选4:桔梗,它的颜色淡雅但不一定有花香。
候选5:康乃馨,选择淡色系列,它们有淡雅的花香。

思维步骤3:根据顾客的需求筛选最佳选择。
百合和紫罗兰都符合顾客的需求,因为它们都有淡雅的颜色和花香。
淡粉色或白色的玫瑰也是一个不错的选择。
桔梗可能不是最佳选择,因为它可能没有花香。
康乃馨是一个可考虑的选择

思维步骤4:给出建议。
“考虑到您妻子喜欢淡雅的颜色和花香,我建议您可以选择百合或紫罗兰。淡粉色或白色的玫瑰也是一个很好的选择。希望这些建议能帮助您做出决策!”
这个例子,可以作为FewShot示例之一,传递给模型,让他学着实现ToT。

总结

  • CoT的核心思想是通过生成一系列中间推理步骤来增强模型的推理能力。在Few-Shot CoT和Zero-Shot CoT两种应用方法中,前者通过提供链式思考示例传递给模型,后者则直接告诉模型进行要按部就班的推理。
  • ToT进一步扩展了CoT的思想,通过搜索由连贯的语言序列组成的思维树来解决复杂问题。我通过一个鲜花选择的实例,展示了如何在实际应用中使用ToT框架。
    有朋友在GitHub上开了一个 Repo,专门给大家介绍ToT的应用方法和实例,他们还给出了几个非常简单的通用ToT提示语,就像下面这样。

image.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/754099.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024-Spring IOC 和 AOP源码分析(上篇)

**前言:**笔者最近面了几次大厂。。。开局Spring源码暴击 之前看过忘了写篇总结。。。 1、介绍一下Spring 核心组件: 常用模块: 常用注解: 2、说一下SpringIOC原理 概念:Spring 通过一个配置文件描述 Bean 及 B…

【Godot4自学手册】第二十六节用GPUParticles2D节点实现地宫入口的奇异光芒

我们的主人公与NPC对话完成后,夜晚来临,在城北有一处乱石岗,出现了奇异光芒,这是地宫的入口,但是有一妖怪把守,我们必须消灭妖怪后才可发现地宫入口。这一节,主要记录利用粒子系统GPUParticles2…

Python和R的区别是什么,Python与R的应用场景是什么?

如果你这么问,那么你可能正站在数据科学的起点。对于志在成为数据专业人员的你来说,学习编程是无疑的。我想行你早就听过Python 与R的比较之声,并在选择中感到困惑。在此,我想说,也算是一种安慰吧:对于语言…

TypeScript:typescript的安装与运行

TypeScript:typescript的安装与运行 1 安装方式 -g全局安装TypeScript: npm install -g typescript2 运行方式 (1)ts编译成js,使用node命令运行js文件 打开vscode,进入ts文件所在目录下并打开终端term…

【算法】多路归并(鱼塘钓鱼)

有 N 个鱼塘排成一排,每个鱼塘中有一定数量的鱼,例如:N5 时,如下表: 鱼塘编号12345第1分钟能钓到的鱼的数量(1..1000)101420169每钓鱼1分钟钓鱼数的减少量(1..100)24653当前鱼塘到下…

静态综合实验

一,1.搭建拓扑结构并启动。 2.根据题意得该图需要14个网段,根据192.168.1.0/24划分子网段,如下: 划分完如图所示: 二、配置IP地址 R1路由器: 1.进入系统视图并改名. 2.接口配置IP地址&#xff1a…

HTML学习:图片格式——超链接

一、图片格式 1.jpg格式 概述:扩展名为.jpg 或.jpeg ,是一种有损的压缩格式(把肉眼不容易观察出来的细节丢弃了)。 主要特点:支持的颜色丰富、占用空间较小、不支持透明背景、不支持动态图。 使用场景:对图片细节没有极高要求的场景,例如:网站的产品…

Nacos学习笔记

Nacos官网 https://github.com/alibaba/nacos/releases https://www.bilibili.com/video/BV1q3411Z79z 1. Nacos介绍 Nacos是Dynamic Naming and Configuration Service的首字母简称,一个更易于构建云原生应用的动态服务发现、配置管理和服务管理平台。 在这个…

SAP Business Application Studio(BAS)中开发Fiori App的基础知识

1. SAP Fiori Tools SAP Fiori Tools是一套用于支持SAP Fiori应用开发的工具,包括应用模板、可视化编辑器、代码生成、应用预览和集成测试工具等。这些工具可以帮助开发者更快速、更简单地创建和维护SAP Fiori应用。SAP Fiori Tools 可与SAP的开发环境(…

MPIKGC:大语言模型改进知识图谱补全

MPIKGC:大语言模型改进知识图谱补全 提出背景MPIKGC框架 论文:https://arxiv.org/pdf/2403.01972.pdf 代码:https://github.com/quqxui/MPIKGC 提出背景 知识图谱就像一个大数据库,里面有很多关于不同事物的信息,这…

003——移植鸿蒙

目录 一、顶层Make分析 二、添加一个新的单板 2.1 Kconfig 2.2 Makefile 2.2.1 顶层Makefile 2.2.2 platform下的Makefile 2.2.3 platform下的bsp.mk文件 2.3 编译与调试 2.4 解决链接错误 三、内核启动流程的学习 3.1 韦东山老师总结的启动四步 3.2 启动文件分析…

sqllab第二十四关通关笔记

知识点: 二次注入 先埋一个炸弹,然后通过其他路径引爆它 查看界面发现是一个登录框,尝试进行登录框的注入发现这里不存在注入点 那么就注册一个新的账户吧 通过点击注册,进入注册面板,注册一个新的账户 用户名为 re…

2024年发布jar到国外maven中央仓库最新教程

2024年发布jar到国外maven中央仓库最新教程 文章目录 1.国外sonatype仓库的版本1.1老OSSHR账号注册说明1.2新账号注册说明 2.新账号注册(必选)3.新账号登录创建Namespace3.1创建Namespace的名字的格式要求(必选)3.2发布一个静态网站(可选&…

代码随想录算法训练营第day27|93.复原IP地址 、 78.子集 、 90.子集II

93.复原IP地址 93. 复原 IP 地址 - 力扣(LeetCode) 有效 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 . 分隔。 例如:"0.1.2.201" 和 …

18 优先级队列

priority_queue介绍 1.优先级队列是一种容器适配器,根据弱排序标准,它的第一个元素总是最大的 2.此上下文类似于堆,堆中可以随时插入元素,检索最大堆元素 3.优先队列实现为容器适配器,容器适配器即将特定容器类封装作…

基于vue实现bilibili网页

学校要求的实验设计,基于vue实现bilibili网页版,可实现以下功能 (1)基本的悬浮动画和页面渲染 (2)可实现登录和未登录的页面变化 (3)在登录页面的,实现密码判断,或者短信验证方式的倒数功能 (4)实现轮播图 (5)实现预览视频(GIF) (6)页面下拉到一定高度出现top栏以及右下角的返回…

蓝桥杯单片机快速开发笔记——超声波测距

一、原理分析 超声波测距是一种常见的测距方法,其原理是利用超声波在空气中传播的速度恒定且较快的特性,通过发送超声波信号并接收回波,计算出物体与传感器之间的距离。以下是超声波测距的原理和应用: 原理: 发送超声…

gma 2.0.7 (2024.03.16) 更新日志

安装 gma 2.0.7 pip install gma2.0.7网盘下载: 链接:https://pan.baidu.com/s/1P0nmZUPMJaPEmYgixoL2QQ?pwd1pc8 提取码:1pc8 注意:此版本没有Linux版! 编译gma的Linux虚拟机没有时间修复,本期Linux版继…

hadoop分布式环境搭建

准备三台centos虚拟机 。(master,slave1,slave2) (hadoop、jdk文件链接:https://pan.baidu.com/s/1wal1CSF1oO2h4dkSbceODg 提取码:4zra) 前四步可参考hadoop伪分布式环境搭建详解-CSDN博客 1.修改主机名…

论文阅读——MoCo

Momentum Contrast for Unsupervised Visual Representation Learning 动量在数学上理解为加权移动平均: yt-1是上一时刻输出,xt是当前时刻输入,m是动量,不想让当前时刻输出只依赖于当前时刻的输入,m很大时&#xff0…