一、项目效果:
二、核心流程:
openCV
读取视频流、在每一帧图片上画一个矩形。- 使用
mediapipe
获取手指关键点坐标。 - 根据手指坐标位置和矩形的坐标位置,判断手指点是否在矩形上,如果在则矩形跟随手指移动。
三、代码流程:
环境准备:
python: 3.8.8
opencv: 4.2.0.32
mediapipe: 0.8.10.1
注:
opencv
版本过高或过低可能出现一些如摄像头打不开、闪退等问题,python
版本影响opencv
可选择的版本。pip install mediapipe
后可能导致openCV
无法正常使用,卸了重新下载,习惯了就好。
1. 读取摄像头视频,画矩形:
import cv2
import time
import numpy as np# 调用摄像头 0 默认摄像头
cap = cv2.VideoCapture(0)# 初始方块数据
x = 100
y = 100
w = 100
h = 100# 读取一帧帧照片
while True:# 返回frame图片rec,frame = cap.read()# 镜像frame = cv2.flip(frame,1)# 画矩形 cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 255), -1)# 显示画面cv2.imshow('frame',frame)# 退出条件if cv2.waitKey(1) & 0xFF == ord('q'):breakcap.release()
cv2.destroyAllWindows()
运行这段代码,摄像头打开,我们会惊讶地看到自己英俊的脸庞,且左上角有个100*100
的紫色矩形。
2. 导入mediapipe处理手指坐标
pip install mediapipe
此时可能出现一些问题,比如openCV
突然用不了了,没关系,卸载了重新下
mediapipe
详细信息:Hands - mediapipe (google.github.io)
简单来说,它会返回给我们21个手指关键点的坐标,即它在视频画面的位置比例( 0~1 ),我们乘以对应画面的宽高,就能得到手指对应的坐标了。
本次用到食指和中指指尖,也就是8号和12号。
2.1 配置一些基础信息:
import cv2
import time
import numpy as np
import mediapipe as mpmp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.handshands = mp_hands.Hands(static_image_mode=True,max_num_hands=2,min_detection_confidence=0.5)
2.2 在处理每一帧图像时,加入:
frame.flags.writeable = Falseframe = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)# 返回结果results = hands.process(frame)frame.flags.writeable = Trueframe = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
当我们在视频流中读取每一帧图片时,将其从BGR
转为RGB
供给mediapipe
生成的hands
对象读取,它会返回这张图片中手指关键点的信息,我们只需要继续对其作画,画在每一帧图片上。
# 如果结果不为空if results.multi_hand_landmarks:# 遍历双手(根据读取顺序,一只只手遍历、画画)for hand_landmarks in results.multi_hand_landmarks:mp_drawing.draw_landmarks(frame,hand_landmarks,mp_hands.HAND_CONNECTIONS,mp_drawing_styles.get_default_hand_landmarks_style(),mp_drawing_styles.get_default_hand_connections_style())
2.3 至此步骤完整代码
import cv2
import time
import numpy as np
import mediapipe as mpmp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.handshands = mp_hands.Hands(static_image_mode=True,max_num_hands=2,min_detection_confidence=0.5)# 调用摄像头 0 默认摄像头
cap = cv2.VideoCapture(0)# 方块初始数组
x = 100
y = 100
w = 100
h = 100# 读取一帧帧照片
while True:# 返回frame图片rec,frame = cap.read()# 镜像frame = cv2.flip(frame,1)frame.flags.writeable = Falseframe = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)# 返回结果results = hands.process(frame)frame.flags.writeable = Trueframe = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)# 如果结果不为空if results.multi_hand_landmarks:# 遍历双手(根据读取顺序,一只只手遍历、画画)# results.multi_hand_landmarks n双手# hand_landmarks 每只手上21个点信息for hand_landmarks in results.multi_hand_landmarks:mp_drawing.draw_landmarks(frame,hand_landmarks,mp_hands.HAND_CONNECTIONS,mp_drawing_styles.get_default_hand_landmarks_style(),mp_drawing_styles.get_default_hand_connections_style())# 画矩形 cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 255), -1)# 显示画面cv2.imshow('frame',frame)# 退出条件if cv2.waitKey(1) & 0xFF == ord('q'):breakcap.release()
cv2.destroyAllWindows()
此时我们运行看一下还挺有意思的:
3. 位置计算
我们这个实验要求拖动方块,那肯定也有不拖动的时候,因此不妨根据上一步获取食指(8)
和中指(12)
指尖的位置,如果这俩离得近,我们就在他与方块重合的时候,根据手指的位置改变方块的坐标。
完整代码:
首先配置环境
代码
import cv2
import time
import math
import numpy as np
import mediapipe as mp# mediapipe配置
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(static_image_mode=True,max_num_hands=2,min_detection_confidence=0.5)# 调用摄像头 0 默认摄像头
cap = cv2.VideoCapture(0)# cv2.namedWindow("frame", 0)
# cv2.resizeWindow("frame", 960, 640)# 获取画面宽度、高度
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 方块初始数组
x = 100
y = 100
w = 100
h = 100L1 = 0
L2 = 0on_square = False
square_color = (0, 255, 0)# 读取一帧帧照片
while True:# 返回frame图片rec,frame = cap.read()# 镜像frame = cv2.flip(frame,1)frame.flags.writeable = Falseframe = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)# 返回结果results = hands.process(frame)frame.flags.writeable = Trueframe = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)# 如果结果不为空if results.multi_hand_landmarks:# 遍历双手(根据读取顺序,一只只手遍历、画画)# results.multi_hand_landmarks n双手# hand_landmarks 每只手上21个点信息for hand_landmarks in results.multi_hand_landmarks:mp_drawing.draw_landmarks(frame,hand_landmarks,mp_hands.HAND_CONNECTIONS,mp_drawing_styles.get_default_hand_landmarks_style(),mp_drawing_styles.get_default_hand_connections_style())# 记录手指每个点的x y 坐标x_list = []y_list = []for landmark in hand_landmarks.landmark:x_list.append(landmark.x)y_list.append(landmark.y)# 获取食指指尖index_finger_x, index_finger_y = int(x_list[8] * width),int(y_list[8] * height)# 获取中指middle_finger_x,middle_finger_y = int(x_list[12] * width), int(y_list[12] * height)# 计算两指尖距离finger_distance = math.hypot((middle_finger_x - index_finger_x), (middle_finger_y - index_finger_y))# 如果双指合并(两之间距离近)if finger_distance < 60:# X坐标范围 Y坐标范围if (index_finger_x > x and index_finger_x < (x + w)) and (index_finger_y > y and index_finger_y < (y + h)):if on_square == False:L1 = index_finger_x - xL2 = index_finger_y - ysquare_color = (255, 0, 255)on_square = Trueelse:# 双指不合并/分开on_square = Falsesquare_color = (0, 255, 0)# 更新坐标if on_square:x = index_finger_x - L1y = index_finger_y - L2# 图像融合 使方块不遮挡视频图片overlay = frame.copy()cv2.rectangle(frame, (x, y), (x + w, y + h), square_color, -1)frame = cv2.addWeighted(overlay, 0.5, frame, 1 - 0.5, 0)# 显示画面cv2.imshow('frame',frame)# 退出条件if cv2.waitKey(1) & 0xFF == ord('q'):breakcap.release()
cv2.destroyAllWindows()