stm32-定时器输出比较PWM

目录

一、输出比较简介

二、PWM简介

三、输出比较模式实现

1.输出比较框图(以通用定时器为例)

2.PWM基本结构

四、固件库实现

1.程序1:PWM呼吸灯

 2.程序2:PWM驱动直流电机

3.程序3:控制舵机 


一、输出比较简介

6427569e13dc4058bc4108d2252324d8.png

死区生成和互补输出一般用于对电机的控制  

二、PWM简介

217520c3ee6d4309a335940969b560c2.png

 惯性系统:即要能使人眼产生视觉停留的系统

三、输出比较模式实现

4df2aa6225314807bd9e305e6156d983.png

1.输出比较框图(以通用定时器为例)

b20f276000924d83b123d9bcd4402f15.pngd5b1cc384dcb4bff8e3172aa26bb5cdb.pngebc01af3e04148d988d242ccd5663b17.png 

 高级定时器比通用定时器多了个互补输出和死区生成852fe456c92146febbc5a922cc620899.png

如右图,两个mos管构成了推挽电路,上管导通下管关闭输出高电平,下管导通上管关闭输出低电平,两管都关闭为高阻态,两管都导通为短路,会对元器件造成损伤,所以两管不能同时导通

互补输出:当单片机要控制这个电路时,就需要两个输出端口,且二者电平要相反,即互补,而这里OC1和OC1N就是互补的两个端口,即互补输出

死区发生器:但是若在上管关闭的瞬间下管就导通,很可能由于器件的不理想而出现上下管都导通的情况,为了避免这种情况发生,于是又是死区发生器,即他可以在上管关闭后延迟一段时间再导通下管,避免同时导通

2.PWM基本结构

10788d1f0c4c4fc9bf92ee1f9302d992.png

1e024aa74b8a49988ef208aef673b9f7.png

四、固件库实现

1.程序1:PWM呼吸灯

1.我使用的是TIM3的CH2的重定义引脚PB5,所以要打开AFIO时钟

2.开启TIM3和GPIO的时钟

3.初始化GPIO结构体。注意:要记得使用库函数进行重定义

4.选择TIM3的时钟输入,可以为内部时钟,外部时钟模式1和2,

        外部时钟模式1:来源可以是ITR(其他定时器,多用于定时器级联),可以是ETR(外部时  钟),可以是CH1引脚的边沿,CH1引脚和CH2引脚(多用于输入捕获测频率)

        外部时钟模式2:ETR的触发控制模式

5.初始化TIM3结构体--配置PSC,ARR,计数模式,等等

6.初始化OC结构体--PWM模式选择,CCR,输出ref的有效电平

7.定时器使能

//使用TIM3的通道2的重定义引脚PB5-指南者上面是红灯
//我们配置
void PWM_Config()
{//首先开启GPIO时钟//开启AFIO时钟,因为用到了重定义RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB | RCC_APB2Periph_AFIO,ENABLE);//开启定时器的时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE);//重定义引脚//选择部分重定义GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3,ENABLE);//初始化GPIO结构体-PB5-输出比较GPIO_InitTypeDef GPIO_InitStruct;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStruct.GPIO_Mode  = GPIO_Mode_AF_PP;//复用推挽,手册可看GPIO_InitStruct.GPIO_Pin = GPIO_Pin_5;GPIO_Init(GPIOB,&GPIO_InitStruct);//选择TIM3的时钟输入TIM_InternalClockConfig(TIM3);//我们直接使用内部时钟//配置TIM结构体TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;TIM_TimeBaseInitStruct.TIM_Prescaler = 72-1;//PSCTIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Up;//计数模式TIM_TimeBaseInitStruct.TIM_Period = 100-1;//ARRTIM_TimeBaseInitStruct.TIM_ClockDivision = TIM_CKD_DIV1;//输入滤波器的分频TIM_TimeBaseInitStruct.TIM_RepetitionCounter = 0;//重复计数器,只有高级定时器才有TIM_TimeBaseInit(TIM3,&TIM_TimeBaseInitStruct);//初始化OC结构体TIM_OCInitTypeDef TIM_OCInitStruct;TIM_OCStructInit(&TIM_OCInitStruct);//先赋初值,因为我们没有把结构体配置完全TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1;//模式选择-PWM1TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable;//输出使能TIM_OCInitStruct.TIM_Pulse = 0;//CCR,这里我们不配置CCR的值,后面用一个库函数直接在主函数            里面配置,实现呼吸灯TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High;//输出ref极性,选择有效电平,即ref有效时输出高电平//TIM_OCInitStruct.TIM_OCNPolarity = ;//TIM_OCInitStruct.TIM_OCIdleState = ;//TIM_OCInitStruct.TIM_OCNIdleState = ;//TIM_OCInitStruct.TIM_OutputNState = ;TIM_OC2Init(TIM3,&TIM_OCInitStruct);//启动定时器TIM_Cmd(TIM3,ENABLE);}void PWM_SetCompare2(uint16_t Compare)
{TIM_SetCompare2(TIM3,Compare);
}
main.c#include "stm32f10x.h"   // Device header
#include "bsp_led.h"
#include ".\tim\bsp_tim.h"extern uint16_t Num;//定时器都是16位的int i;
void Delay(u32 i)
{u32 temp;SysTick->LOAD=9000*i;      //设置重装数值, 72MHZ时SysTick->CTRL=0X01;        //使能,减到零是无动作,采用外部时钟源SysTick->VAL=0;            //清零计数器do{temp=SysTick->CTRL;       //读取当前倒计数值}while((temp&0x01)&&(!(temp&(1<<16))));    //等待时间到达SysTick->CTRL=0;    //关闭计数器SysTick->VAL=0;        //清空计数器
}//ARR=99-->PWM一个周期是100,那么分辨率为1%
//占空比 = CCR/(ARR+1) 
//频率 = 计数器溢出频率 = CK_PSC/(PSC+1)/(ARR+1) = 72M/720/100= 1000HZ ->1ms
int main()
{LED_GPIO_Config();PWM_Config();while(1){for(i=0;i<=100;i++){PWM_SetCompare2(i);Delay(10);}for(i=100;i>=0;i--){PWM_SetCompare2(i);Delay(10);}}
}

 2.程序2:PWM驱动直流电机

具体TIM的配置过程同呼吸灯一样,同样是输出不同的PWM占空比来实现电机的不同速度

我们需要三个引脚,一个输出PWM给电机,两个接电机的控制引脚

  • 使用PA2输出PWM,AIN1/2接到PA4/5
  • 频率设置为1KHZ(可以自己随便设置)
  • 定义一个八位有符号的变量Speed,+:正转  -:反转
  • 使用GPIO_SetBits/ResetBits();来设置AIN1/2的电平高低
  • 使用按键来改变转速
void PWM_Config()
{//开启时钟//使用TIM2的CH3的PA2RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);//开启PWM引脚//初始化GPIOGPIO_InitTypeDef GPIO_InitStruct;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStruct.GPIO_Mode  = GPIO_Mode_AF_PP;//复用推挽,手册可看GPIO_InitStruct.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_4 | GPIO_Pin_5 ;GPIO_Init(GPIOA,&GPIO_InitStruct);//选择时基单元的时钟-为内部时钟--定时器上电后默认是内部时钟,故不写这一个也行TIM_InternalClockConfig(TIM2);//初始化时基单元TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;//配置1KHZ的PWMTIM_TimeBaseInitStruct.TIM_Prescaler = 720-1;//PSC-预分频器TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Up;//向上计数 TIM_TimeBaseInitStruct.TIM_Period = 100-1;//ARR寄存器-重装载寄存器TIM_TimeBaseInitStruct.TIM_ClockDivision = TIM_CKD_DIV1;/*不分频----滤波器的采样频率,可以由内部时钟直接提供,也可以由内部时钟加一个时钟分频而来,分频系数就是由TIM_ClockDivision决定*/TIM_TimeBaseInitStruct.TIM_RepetitionCounter = 0;//重复计数器,只有高级定时器才有TIM_TimeBaseInit(TIM2,&TIM_TimeBaseInitStruct);//初始化OC-输出比较结构体TIM_OCInitTypeDef TIM_OCInitStruct;TIM_OCStructInit(&TIM_OCInitStruct);//因为结构体里面的成员有些是高级定时器采用得到,所以这里就先全部初始化一遍,然后再配置具体的值TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1;//输出比较模式TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable;//TIM_OCInitStruct.TIM_Pulse = 50;//CRR TIM_OCInitStruct.TIM_Pulse = 0;//输出要求波型,这里的CRR就不需要了,用固件库的一个函数 TIM_SetCompare3 直接配置CRRTIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High;//输出比较极性TIM_OC3Init(TIM2,&TIM_OCInitStruct);//CH3通道//启动定时器TIM_Cmd(TIM2,ENABLE);}
//电机控制函数void Motor_SetSpeed(int8_t Speed)//+:正转 -:反转
{if(Speed >= 0){GPIO_SetBits(GPIOA,GPIO_Pin_4);GPIO_ResetBits(GPIOA,GPIO_Pin_5);TIM_SetCompare3(TIM3,Speed);}else {GPIO_ResetBits(GPIOA,GPIO_Pin_4);GPIO_SetBits(GPIOA,GPIO_Pin_5);TIM_SetCompare3(TIM3,-Speed);}
}
//主函数#include "stm32f10x.h"   // Device header
#include ".\tim\bsp_tim.h"
#include ".\KEY\bsp_key.h"uint8_t KeyNum;
int8_t Speed;int main()
{KEY_GPIO_Config();PWM_Config();while(1){KeyNum = Key_Scan();if(KeyNum == 0){Speed += 20;if(Speed > 100){Speed = -100;}}else if(KeyNum == 1){Speed -= 20;if(Speed < -100){Speed = 100;}}Motor_SetSpeed(Speed);}
}

3.程序3:控制舵机 

0ee84118f09c434898681decee12dc1c.png

-TB6612驱动板

VM->STLINK的5v

VCC->面包板3.3v

GND->面包板负极

AO1 AO2 接电机

STBY->待机控制引脚,这里不需要待机,接面包3.3v

AIN1/2-> 任意接两个引脚

PWMA->PWM输出控制引脚

驱动VM放在左下角使用PA2输出PWM,AIN1/2接到PA4/5

  • 要点:输出如上图右侧所示的PWM波型
  • 指南者的PA0引脚为按键1,所以使用TIM2的CH3通道的PA2
  • PWM要求频率为50HZ,即总时间20ms,高电平占0.5~2.5ms,这里我们可以给ARR配置20000-1,PSC配置72-1
  • 封装Angle转换函数0-50  180->2500   -->y=Angle/180*2500+50, Angle使用浮点型,利于计算
  • 使用按键来改变角度

#include "bsp_tim.h"void PWM_Config()
{//开启时钟//使用TIM2的CH3的PA2RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);//开启PWM引脚//初始化GPIOGPIO_InitTypeDef GPIO_InitStruct;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStruct.GPIO_Mode  = GPIO_Mode_AF_PP;//复用推挽,手册可看GPIO_InitStruct.GPIO_Pin = GPIO_Pin_2;GPIO_Init(GPIOA,&GPIO_InitStruct);//选择时基单元的时钟-为内部时钟--定时器上电后默认是内部时钟,故不写这一个也行TIM_InternalClockConfig(TIM2);//初始化时基单元TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;TIM_TimeBaseInitStruct.TIM_Prescaler = 72-1;//PSC-预分频器TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Up;//向上计数 TIM_TimeBaseInitStruct.TIM_Period = 20000-1;//ARR寄存器-重装载寄存器TIM_TimeBaseInitStruct.TIM_ClockDivision = TIM_CKD_DIV1;/*不分频----滤波器的采样频率,可以由内部时钟直接提供,也可以由内部时钟加一个时钟分频而来,分频系数就是由TIM_ClockDivision决定*/TIM_TimeBaseInitStruct.TIM_RepetitionCounter = 0;//重复计数器,只有高级定时器才有TIM_TimeBaseInit(TIM2,&TIM_TimeBaseInitStruct);//初始化OC-输出比较结构体TIM_OCInitTypeDef TIM_OCInitStruct;TIM_OCStructInit(&TIM_OCInitStruct);//因为结构体里面的成员有些是高级定时器采用得到,所以这里就先全部初始化一遍,然后再配置具体的值TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1;//输出比较模式TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable;//TIM_OCInitStruct.TIM_Pulse = 50;//CRR   --舵机要求设置频率50HZ-即总时间20ms,高电平时间在0.5~2.5ms之间的PWM波型即CCR->500~2500TIM_OCInitStruct.TIM_Pulse = 0;//输出要求波型,这里的CRR就不需要了,用固件库的一个函数 TIM_SetCompare3 直接配置CRRTIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High;//输出比较极性TIM_OC3Init(TIM2,&TIM_OCInitStruct);//CH3通道//启动定时器TIM_Cmd(TIM2,ENABLE);
}
//0.5ms-0度   2.5ms-180度
//0度   	CCR=500
//180度   CCR=2500
//舵机设置角度,范围0~180
void Servo_SetAngle(float Angle)
{TIM_SetCompare3(TIM2,Angle*2000/180+500);
}void PWM_SetCompare3(uint16_t Compare)//设置CRR
{TIM_SetCompare3(TIM2,Compare);
}
#include "stm32f10x.h"   // Device header
#include ".\tim\bsp_tim.h"
#include ".\KEY\bsp_key.h"
uint8_t KeyNum;
float Angle;int main()
{KEY_GPIO_Config();LED_GPIO_Config();PWM_Config();while(1){KeyNum = Key_Scan();if(KeyNum == 0){Angle+=30;if(Angle>180){Angle = 0;}}else if(KeyNum == 1){Angle-=30;if(Angle<0){Angle = 180;}}Servo_SetAngle(Angle);}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/748124.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习每周学习总结P1(pytorch手写数字识别)

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 目录 0. 总结1. 数据导入部分2. 模型构建部分3. 训练前的准备4. 定义训练函数5. 定义测试函数6. 训练过程 0. 总结 总结: 数据导入部分&a…

014 Linux_同步

​&#x1f308;个人主页&#xff1a;Fan_558 &#x1f525; 系列专栏&#xff1a;Linux &#x1f339;关注我&#x1f4aa;&#x1f3fb;带你学更多操作系统知识 文章目录 前言一、死锁&#xff08;1&#xff09;死锁概念 二、同步&#xff08;1&#xff09;同步概念&#xff…

计算机考研|双非一战135上岸,408经验分享+复盘

计算机专业的同学真的别想的太天真&#xff01; 相比于其他专业&#xff0c;计算机专业的同学其实还是很有优势的 但是现在随着计算机专业的同学越来越多&#xff0c;找工作的困难程度以及学历自然而然被卷起来了 以前的算法岗基本要求在本科以上&#xff0c;现在基本都是非92研…

家电工厂5G智能制造数字孪生可视化平台,推进家电工业数字化转型

家电5G智能制造工厂数字孪生可视化平台&#xff0c;推进家电工业数字化转型。随着科技的飞速发展&#xff0c;家电行业正迎来一场前所未有的数字化转型。在这场制造业数字化转型中&#xff0c;家电5G智能制造工厂数字孪生可视化平台扮演着至关重要的角色。本文将从数字孪生技术…

提交数据加快百度搜索引擎收录

百度站长工具做了更新&#xff0c;百度收录的地址分享如下&#xff0c;新站点提交后&#xff0c;可以加快百度收录。 普通收录_加快网站内容抓取&#xff0c;快速提交数据工具_站长工具_网站支持_百度搜索资源平台普通收录工具可实时向百度推送数据&#xff0c;创建并提交site…

git 安装、创建仓库、常用命令、克隆下载、上传项目、删除分支 -- 一篇文章总结

一、git安装 1、git安装地址&#xff1a;https://git-scm.com/downloads 2、选择操作系统 3、安装自己系统对应的操作位数 4、等待下载完&#xff0c;一路next安装就可以了 5、安装完成后&#xff0c;在任意文件夹点击右键&#xff0c;看到下图说明安装成功 二、创建仓库 1…

云原生(二)、Docker基础

Docker Docker 是一种开源的容器化平台&#xff0c;用于开发、部署和运行应用程序。它允许开发者将应用程序及其所有依赖项打包到一个可移植的容器中&#xff0c;这个容器可以在任何支持 Docker 的环境中运行&#xff0c;无论是开发人员的个人笔记本电脑、测试环境、生产服务器…

ROS Kinetic通信编程:话题、服务、动作编程

文章目录 一、话题编程二、服务编程三、动作编程 接上篇&#xff0c;继续学习ROS通信编程基础 一、话题编程 步骤&#xff1a; 创建发布者 初始化ROS节点向ROS Master注册节点信息&#xff0c;包括发布的话题名和话题中的消息类型按照一定频率循环发布消息 创建订阅者 初始化…

stm32-编码器测速

一、编码器简介 编码电机 旋转编码器 A,B相分别接通道一和二的引脚&#xff0c;VCC&#xff0c;GND接单片机VCC&#xff0c;GND 二、正交编码器工作原理 以前的代码是通过触发外部中断&#xff0c;然后在中断函数里手动进行计次。使用编码器接口的好处就是节约软件资源。对于频…

从0开始回顾MySQL---事务四大特性

事务概述 事务是一个最小的工作单元。在数据库当中&#xff0c;事务表示一件完整的事儿。一个业务的完成可能需要多条DML语句共同配合才能完成&#xff0c;例如转账业务&#xff0c;需要执行两条DML语句&#xff0c;先更新张三账户的余额&#xff0c;再更新李四账户的余额&…

实现elasticsearch和数据库的数据同步

1. 数据同步 elasticsearch中的酒店数据来自于mysql数据库&#xff0c;因此mysql数据发生改变时&#xff0c;elasticsearch也必须跟着改变&#xff0c;这个就是elasticsearch与mysql之间的数据同步。 1.1. 思路分析 常见的数据同步方案有三种&#xff1a; 同步调用 异步通知…

面试题手撕篇

参考博客 开始之前&#xff0c;理解递归 手写 浅拷贝 function shallow(target){if(target instanceof Array){return [...resObj]}else{return Object.assign({},target);} }手写深拷贝 const _sampleDeepClone target > {// 补全代码return JSON.parse(JSON.stringify…

EtherCAT开源主站 IGH 介绍及主站伺服控制过程

目录 前言 IGH EtherCAT主站介绍 主要特点和功能 使用场景 SOEM 主站介绍 SOEM 的特点和功能 SOEM 的使用场景 IGH 主站 和 SOEM对比 1. 功能和复杂性 2. 资源消耗和移植性 3. 使用场景 EtherCAT 通信原理 EtherCAT主站控制伺服过程 位置规划模式 原点复归模式…

Ansible非标记语言YAML与任务剧本Playbook

前言 上篇介绍了 Ansible 单模块&#xff08;AD-Hoc&#xff09;的相关内容Ansible自动化运维Inventory与Ad-Hoc-CSDN博客&#xff0c;Ad-Hoc 命令是一次性的、即时执行的命令&#xff0c;用于在远程主机上执行特定任务&#xff0c;这些命令通常用于快速执行简单的任务。当需要…

MS08-067 漏洞利用与安全加固

文章目录 环境说明1 MS08_067 简介2 MS08_067 复现过程3 MS08_067 安全加固 环境说明 渗透机操作系统&#xff1a;2024.1漏洞复现操作系统: Windows XP Professional with Service Pack 2- VL (English)安全加固复现操作系统&#xff1a;Windows XP Professional with Service …

C语言案例2,请编程序将“China“译成密码,密码规律是:用原来的字母后面第4个字母代替原来的字母,变为Glmre,持续更新~

一.题目 /* 请编程序将“China”译成密码,密码规律是:用原来的字母后面第4个字母代替原来的字母。 例如,字母“A”后面第4个字母是“E”&#xff0c;用“E”代替“A”。因此,“China”应译为“Glmre”。 请编一程序,用赋初值的方法使cl,c2&#xff0c;c3,c4,c5 这5个变量的值分…

YoloV5改进策略:下采样改进|HWD改进下采样

摘要 本文使用HWD改进下采样&#xff0c;在YoloV5的测试中实现涨点。 论文解读 在卷积神经网络&#xff08;CNNs&#xff09;中&#xff0c;极大池化或跨行卷积等下采样操作被广泛用于聚合局部特征、扩大感受野和最小化计算开销。然而&#xff0c;对于语义分割任务&#xff…

HTML_CSS练习:HTML注释

一、代码示例 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>HTML注释</title> </head> <body><marquee loop"1">马龙强<!--下面的输入框是可以滚动的&#x…

【Python】清理conda缓存的常用命令

最近发现磁盘空间不足&#xff0c;很大一部分都被anaconda占据了&#xff0c;下面是一些清除conda缓存的命令 清理所有环境的Anaconda包缓存 删除所有未使用的包以及缓存的索引和临时文件 conda clean --all清理某一特定环境的Anaconda包缓存 conda clean --all -n 环境名清…

【ansible】ansible的介绍和安装

前言运维自动化 云计算核心职能 搭建平台架构 日常运营保障 性能效率优化 相关工具 代码管理&#xff08;SCM&#xff09;&#xff1a;GitHub、GitLab、BitBucket、SubVersion 构建工具&#xff1a;maven、Ant、Gradle 自动部署&#xff1a;Capistrano、CodeDeploy 持续…