【STM32】文件系统FATFS与Flash的初步使用

文件系统简介

简介可以不看,直接看移植步骤
在这里插入图片描述
文件系统是介于应用层和底层间的模糊层。底层提供API,比如说使用SDIO或者SPI等读写一个字节。文件系统把这些API组合包装起来,并且提供一些列函数,我们可以使用这些函数进行更进一步的对存储设备的操作。

底层:操作单片机外设,读写。需要我们进行配置。
中层:中间层 FATFS 模块,实现了 FAT 文件读/写协议。一般不管
顶层:文件系统提供给我们的函数库,我们就是要使用这些。
FATFS的实现过程(白色框中的内容是需要我们自己实现的也就是底层设备的输入输出以及最高层的用户应用程序,蓝色框由fatfs提供)
在这里插入图片描述

源码获取

FATFS 的源码及英文详述,大家可以在:http://elm-chan.org/fsw/ff/00index_e.html 这个网站下载。下载解压之后的根目录下有这么两个文件夹,源码和帮助文档。
在这里插入图片描述
DOC文件夹下有Fatfs提供的具体函数的使用方法
SRC文件的构成如下
在这里插入图片描述

在这里插入图片描述
Fatfs的源码阅读可以参考《零死角玩转 STM32F103—指南者》中的阅读提示,如果只是想使用,那么只需要看如何移植

移植FATFS 准备工作

背景:两个文件 ffconf.h diskio.c

FATFS 模块在移植的时候,我们一般只需要修改 2 个文件,即 ffconf.hdiskio.c
ffconf.h :FATFS模块的所有配置项都是存放在 ffconf.h 里面,我们可以通过配置里面的一些选项,来满足自己的需求.FATFS 的说明文档里面有很详细的介绍
在这里插入图片描述

以spi读写flash为例,在实现了spi往flash中读写单个字节的底层代码之后,就可以进行fatfs的移植了。

0.创建一个新的工程,并且实现简单的点灯,spi操作等功能。

1.准备一份工程源码称为SPI—FatFs。将。将 FatFs 源码中的 src 文件夹整个文件夹拷贝一份至“SPI—FatFs 文件系统\USER\”文件夹下并修改名为“FATFS”。文件夹名字没有固定名称,这里只是方便书写。

2.打开工程文件,并将 FatFs 组件文件添加到工程中,需要添加有 ff.c、diskio.c 和cc936.c 三个文件.
在这里插入图片描述
3.添加 FATFS 文件夹到工程的 include 选项中。打开工程选项对话框,选择“C/C++”选项下的“Include Paths”项目,在弹出路径设置对话框中选择添加“FATFS”文件夹
在这里插入图片描述
4.修改 diskio.c 文件和 ffconf.h 文件,diskio.c 文件内容是与底层设备输入输出接口函数文件,不同硬件设计驱动就不同,需要的文件也不同;FatFs默认使用日语,我们想要支持简体中文需要
修改 FatFs 的配置,即修改 ffconf.h 文件。

FatFs 底层设备驱动函数

文件系统实现中间模糊层,提供上层函数给用户使用。需要用户实现底层接口。diskio.c 文件内容就是与底层接口相关的。

移植需要用户支持函数,一般只有前六个需要使用
在这里插入图片描述
disk_status,disk_initialize,disk_read是必要配置的。
disk_write,get_fattime,disk_ioctl (CTRL_SYNC)是实现创建文件、修改文件需要的。
为支持简体中文长文件名称需要添加 ff_convert 和 ff_wtoupper 函数,实际这两个已经在 cc936.c 文件中实现,我们只要直接把 cc936.c 文件添加到工程中就可以。

移植FATFS 主要步骤

1.配置数据类型:在 integer.h 里面去定义好数据的类型。这里需要了解你用的编译器的数据类型,并根据编译器定义好数据类型。

2.配置:通过 ffconf.h 配置 FATFS 的相关功能,以满足你的需要。

3.函数编写:打开 diskio.c,进行底层驱动编写,需要编写 5 个接口函数。
在这里插入图片描述

配置integer.h 以定义数据类型(一般不需要)

我们使用的是 MDK5.34 编译器,数据类型和 integer.h 里面定义的一致,所以此步,我们不需要做任何改动。

配置 ffconf.h 选择模式

关于 ffconf.h 里面的相关配置,配置修改为我们需要的值即可,其他的配置用默认配置。

1 #define _USE_MKFS 1	//格式化功能选择,为使用 FatFs 格式化功能,需要把它设置为 1。
2 #define _CODE_PAGE 936	//语言功能选择,并要求把相关语言文件添加到工程宏。为支持简体中文文件名需要使用“936” 指的是把 cc936.c 文件添加到工程中
3 #define _USE_LFN 2	//长文件名支持,默认不支持长文件名,这里配置为 2,支持长文件名,并指定使用栈空间为缓冲区。
4 #define _VOLUMES 2	//指定物理设备数量
5 #define _MIN_SS 512	//指定扇区大小的最小值和最大值。SD 卡扇区大小一般都为 512字节,SPI Flash芯片扇区大小一般设置为 4096字节
6 #define _MAX_SS 4096	//指定扇区大小的最小值和最大值

在这里插入图片描述

为每个设备定义一个物理编号

 #define ATA 	0 	// 预留 SD 卡使用#define SPI_FLASH 	1 // 外部 SPI Flash

实现五个函数

设备状态获取(disk_status)、设备初始化(disk_initialize)、扇区读取(disk_read)、扇区写(disk_write)、其他控制(disk_ioctl)。

disk_initialize

函数名称disk_initialize
函数原型DSTATUS disk_initialize(BYTE Drive)
功能描述初始化磁盘驱动器
函数参数Drive:指定要初始化的逻辑驱动器号,即盘符,应当取值 0~9
返回值函数返回一个磁盘状态作为结果,对于磁盘状态的细节信息,请参考 disk_status函数
所在文件ff.c
实例disk_initialize(0); /* 初始化驱动器 0 */
注意事项disk_initialize 函数初始化一个逻辑驱动器为读/写做准备,函数成功时,返回值的 STA_NOINIT 标志被清零;应用程序不应调用此函数,否则卷上的 FAT 结构可能会损坏;如果需要重新初始化文件系统,可使用 f_mount 函数;在 FatFs 模块上卷注册处理时调用该函数可控制设备的改变;此函数在 FatFs 挂在卷时调用,应用程序不应该在 FatFs 活动时使用此函数
DSTATUS disk_status (BYTE pdrv /* 物理编号 */)
{
DSTATUS status = STA_NOINIT;
switch (pdrv) {case ATA: /* SD CARD 预留,也可以*/break;case SPI_FLASH: /* SPI Flash 状态检测:读取 SPI Flash 设备 ID */if (sFLASH_ID == SPI_FLASH_ReadID()) {/* 设备 ID 读取结果正确 */status &= ~STA_NOINIT;} else { /* 设备 ID 读取结果错误 */status = STA_NOINIT;}break;default:status = STA_NOINIT;}return status;}

注意点
SPI_FLASH_ReadID函数由用户自己实现,目的是检测设备是否已经就绪。

disk_status

函数名称disk_status
函数原型DRESULT disk_status (BYTE Drive)
功能描述返回当前磁盘驱动器的状态
函数参数Drive:指定要确认的逻辑驱动器号,即盘符,应当取值 0~9
返回值磁盘状态返回下列标志的组合,FatFs 只使用 STA_NOINIT 和 STA_PROTECTEDSTA_NOINIT: 表明磁盘驱动未初始化,下面列出了产生该标志置位或清零的原因:置位:系统复位,磁盘被移除和磁盘初始化函数失败。清零:磁盘初始化函数成功.STA_NODISK:表明驱动器中没有设备,安装磁盘驱动器后总为0 STA_PROTECTED:表明设备被写保护,不支持写保护的设备总为 0,当STA_NODISK 置位时非法
所在文件ff.c
实例disk_status(0); /* 获取驱动器 0 的状态 */
DSTATUS disk_initialize (BYTE pdrv /* 物理编号 */)
{	uint16_t i;DSTATUS status = STA_NOINIT;switch (pdrv) {case ATA: /* SD CARD */break;case SPI_FLASH: /* SPI Flash */SPI_FLASH_Init(); /* 初始化 SPI Flash */i=500;/* 延时一小段时间 */while (--i);SPI_Flash_WAKEUP();/* 唤醒 SPI Flash */status = disk_status(SPI_FLASH);/* 获取 SPI Flash 芯片状态 */break;default:status = STA_NOINIT;}return status;
}

注意点
SPI_FLASH_Init();SPI_Flash_WAKEUP();都是由用户自己实现的底层功能,具体需要参照Flash对应的要求进行编写(一般也就是按着一定的规则发送数据字节过去,所以一般编程顺序是,线实现单字节的spi收发,再按照要求编写多字节的功能,再嵌入文件系统)

disk_read

函数名称disk_read
函数原型DRESULT disk_read (BYTE Drive, BYTE* Buffer, DWORD SectorNumber, BYTE SectorCount)
功能描述从磁盘驱动器上读取扇区
函数参数Drive:指定逻辑驱动器号,即盘符,应当取值 0~9 Buffer:指向存储读取数据字节数组的指针,需要为所读取字节数的大小,扇区统计的扇区大小是需要的(注:FaFts 指定的内存地址并不总是字对齐的,如果硬件不支持不对齐的数据传输,函数里需要进行处理)SectorNumber:指定起始扇区的逻辑块(LBA)上的地址SectorCount:指定要读取的扇区数,取值 1~128
返回值RES_OK(0):函数成功RES_ERROR:读操作期间产生了任何错误且不能恢复它RES_PARERR:非法参数RES_NOTRDY:磁盘驱动器没有初始化
所在文件ff.c
DRESULT disk_read (BYTE pdrv, /* 设备物理编号(0..) */BYTE *buff, /* 数据缓存区 */DWORD sector, /* 扇区首地址 */UINT count /* 扇区个数(1..128) */)
{DRESULT status = RES_PARERR;switch (pdrv) {case ATA: /* SD CARD */break;case SPI_FLASH:sector+=512;/* 扇区偏移 2MB,外部 Flash 文件系统空间放在 SPI Flash 后面 6MB 空间 */SPI_FLASH_BufferRead(buff, sector <<12, count<<12);status = RES_OK;break;default:status = RES_PARERR;}return status;}

注意点
参数pdrv 为设备物理编号,用户自定义,buff:BYTE 类型指针变量,buff指向用来存放读取到数据的存储区首地址,sector 是一个 DWORD 类型变量,指定要读取数据的扇区首地址。count 是一个 UINT 类型变量,指定扇区数量。
数据类型:BYTE 类型实际是 unsigned char 类型,DWORD 类型实际是 unsigned long 类型,UINT类型实际是 unsigned int 类型,类型定义在 integer.h 文件中。
偏移 :板使用的 SPI Flash 芯片型号为 W25Q64FV,每个扇区大小为 4096 个字节(4KB),总共有8M字节空间若。要从Flash的首地址开始存放文件系统则不需要偏移。 只将后部分6MB空间分配给FatFs使用,即 FatFs 是从 2MB 空间开始,为实现这个效果需要将所有的读写地址都偏移 512 个扇区空间
SPI_FLASH_BufferRead():读flash的底层程序,实现在指定地址读取指定长度的数据,示例

/**
* @brief 读取 FLASH 数据
* @param pBuffer,存储读出数据的指针
* @param ReadAddr,读取地址
* @param NumByteToRead,读取数据长度
* @retval 无
*/
void SPI_FLASH_BufferRead(u8* pBuffer, u32 ReadAddr, u16 NumByteToRead)
{SPI_FLASH_CS_LOW(); /* 选择 FLASH: CS 低电平 */SPI_FLASH_SendByte(W25X_ReadData); /* 发送 读 指令 */SPI_FLASH_SendByte((ReadAddr & 0xFF0000) >> 16) /* 发送 读 地址高位 */SPI_FLASH_SendByte((ReadAddr& 0xFF00) >> 8); /* 发送 读 地址中位 */SPI_FLASH_SendByte(ReadAddr & 0xFF); /* 发送 读 地址低位 */while (NumByteToRead--)/* 读取数据 */{*pBuffer = SPI_FLASH_SendByte(Dummy_Byte);/* 读取一个字节*/pBuffer++;/* 指向下一个字节缓冲区 */}SPI_FLASH_CS_HIGH();/* 停止信号 FLASH: CS 高电平 */
}

disk_write

函数名称disk_write
函数原型DRESULT disk_write (BYTE Drive, const BYTE* Buffer, DWORD SectorNumber, BYTE SectorCount)
功能描述向磁盘写入一个或多个扇区
函数参数Drive:指定逻辑驱动器号,即盘符,应当取值 0~9Buffer:指向要写入字节数组的指针(注:FaFts 指定的内存地址并不总是字对齐的,如果硬件不支持不对齐的数据传输,函数里需要进行处理)SectorNumber:指定起始扇区的逻辑块(LBA)上的地址SectorCount:指定要写入的扇区数,取值 1~128
返回值RES_OK(0):函数成功RES_ERROR:写操作期间产生了任何错误且不能恢复它RES_WRPER:媒体被写保护RES_PARERR:非法参数RES_NOTRDY:磁盘驱动器没有初始化
所在文件ff.c
注意事项只读配置中不需要此函数
DRESULT disk_write (BYTE pdrv, /* 设备物理编号(0..) */const BYTE *buff, /* 欲写入数据的缓存区 */DWORD sector, /* 扇区首地址 */UINT count /* 扇区个数(1..128) */
)
{uint32_t write_addr;DRESULT status = RES_PARERR;if (!count) {return RES_PARERR; /* Check parameter */}switch (pdrv) {case ATA: /* SD CARD */break;case SPI_FLASH:/* 扇区偏移 2MB,外部 Flash 文件系统空间放在 SPI Flash 后面 6MB 空间 */sector+=512;write_addr = sector<<12;SPI_FLASH_SectorErase(write_addr);//对于Flash 先擦除再写SPI_FLASH_BufferWrite((u8 *)buff,write_addr,count<<12);//写status = RES_OK;break;default:status = RES_PARERR;}return status;}

SPI_FLASH_SectorErase SPI_FLASH_BufferWrite用户实现

disk_ioctl

函数名称disk_ioctl
函数原型DRESULT disk_ioctl (BYTE Drive, BYTE Command, void* Buffer)
功能描述控制设备指定特性和除了读/写外的杂项功能
函数参数Drive:指定逻辑驱动器号,即盘符,应当取值 0~9Command:指定命令代码Buffer:指向参数缓冲区的指针,取决于命令代码,不使用时,指定一个 NULL指针
返回值RES_OK(0):函数成功RES_ERROR:写操作期间产生了任何错误且不能恢复它RES_PARERR:非法参数RES_NOTRDY:磁盘驱动器没有初始化
所在文件ff.c
注意事项CTRL_SYNC:确保磁盘驱动器已经完成了写处理,当磁盘 I/O 有一个写回缓存,立即刷新原扇区,只读配置下不适用此命令GET_SECTOR_SIZE:返回磁盘的扇区大小,只用于 f_mkfs()GET_SECTOR_COUNT:返回可利用的扇区数,_MAX_SS ≥ 1024 时可用GET_BLOCK_SIZE:获得擦除块大小,只用于 f_mkfs()CTRL_ERASE_SECTOR:强制擦除一块的扇区,_USE_ERASE > 0 时可用
DRESULT disk_ioctl (
BYTE pdrv, /* 物理编号 */
BYTE cmd, /* 控制指令 */
void *buff /* 写入或者读取数据地址指针 */
)
{DRESULT status = RES_PARERR;switch (pdrv) {case ATA: /* SD CARD */break;case SPI_FLASH:switch (cmd) {/* 扇区数量:1536*4096/1024/1024=6(MB) */case GET_SECTOR_COUNT:*(DWORD * )buff = 1536;break;/* 扇区大小 */case GET_SECTOR_SIZE :*(WORD * )buff = 4096;break;/* 同时擦除扇区个数 */case GET_BLOCK_SIZE :*(DWORD * )buff = 1;break;}status = RES_OK;break;default:status = RES_PARERR;}return status;}

参数pdrv 为设备物理编号,cmd 为控制指令,包括发出同步信号、获取扇区数目、获取扇区大小、获取擦除块数量等等指令,buff 为指令对应的数据指针。
cmd:对 于 SPI Flash 芯 片 , 为 支 持 FatFs 格 式 化 功 能 , 需 要 用 到 获 取 扇 区 数 量(GET_SECTOR_COUNT)指令和获取擦除块数量(GET_BLOCK_SIZE)。另外,SD 卡扇区大小为 512 字节,SPI Flash 芯片一般设置扇区大小为 4096 字节,所以需要用到获取扇区大小(GET_SECTOR_SIZE)指令。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/74801.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《protobuf》基础语法2

文章目录 枚举类型ANY 类型oneof 类型map 类型改进通讯录实例 枚举类型 protobuf里有枚举类型&#xff0c;定义如下 enum PhoneType {string home_addr 0;string work_addr 1; }同message一样&#xff0c;可分为 嵌套定义&#xff0c;文件内定义&#xff0c;文件外定义。不…

Java基础之static关键字

目录 静态的特点第一章、静态代码块第二章、静态属性第三章、静态方法调用静态方法时静态方法中调用非静态方法时 第四章、static关键字与其他关键字 友情提醒 先看文章目录&#xff0c;大致了解文章知识点结构&#xff0c;点击文章目录可直接跳转到文章指定位置。 静态的特点…

IDEA控制台取消悬浮全局配置SpringBoot配置https

IDEA控制台取消悬浮 idea 全局配置 SpringBoot(Tomcat) 配置https&#xff0c;同时支持http 利用JDK生成证书 keytool -genkey -alias httpsserver -keyalg RSA -keysize 2048 -keystore server.p12 -validity 3650配置类 Configuration public class TomcatConfig {Value(&quo…

【数据结构】——排序的相关习题

目录 一、选择填空判断题题型一&#xff08;插入排序——直接插入排序&#xff09;题型二&#xff08;插入排序——折半插入排序&#xff09;题型三&#xff08;插入排序——希尔排序&#xff09;题型四&#xff08;交换排序——冒泡排序&#xff09;题型五&#xff08;交换排序…

时空预测 | 线性时空预测模型、图时空预测

目录 线性时空预测图时空预测 线性时空预测 这篇文章在时空预测领域&#xff0c;搭建了一个简单高效的线性模型&#xff0c;且使用了channel-independence的方式进行建模。 模型的整体结构如下图所示&#xff0c;是一个级联的结构。输入分为三个部分&#xff1a;temporal embed…

2核2G3M带宽服务器腾讯云和阿里云价格、性能对比

2核2G云服务器可以选择阿里云服务器或腾讯云服务器&#xff0c;腾讯云轻量2核2G3M带宽服务器95元一年&#xff0c;阿里云轻量2核2G3M带宽优惠价108元一年&#xff0c;不只是轻量应用服务器&#xff0c;阿里云还可以选择ECS云服务器u1&#xff0c;腾讯云也可以选择CVM标准型S5云…

【网络安全】图解 Kerberos:身份认证

图解 Kerberos&#xff1a;身份认证 1.什么是 Kerberos &#xff1f;2.Kerberos 基本概念2.1 基本概念2.2 KDC 3.Kerberos 原理3.1 客户端与 Authentication Service3.2 客户端与 Ticket Granting Service3.3 客户端与 HTTP Service Kerberos 是一种身份认证协议&#xff0c;被…

Java事件机制简介 内含面试题

面试题分享 云数据解决事务回滚问题 点我直达 2023最新面试合集链接 2023大厂面试题PDF 面试题PDF版本 java、python面试题 项目实战:AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮…

预推免,保研------长安大学保内,附加分面试准备【记录帖】

&#x1f680;长安大学——人工智能系——程惠泽 &#x1f68c;前六学期专业排名&#xff1a;9/82 &#x1f68c;信息门户GPA&#xff1a;3.94 &#x1f68c;平均成绩&#xff1a;89.83 &#x1f68c;加权成绩&#xff1a;89.15 / ☁️本人比较菜&#xff0c;只能保研本校&…

centos 端口被占用的快速排查方式

问题笔记 centos 端口被占用的快速排查方式 centos 端口被占用的快速排查方式 这里说一个我刚刚遇到的问题&#xff0c;解决步骤用来记录&#xff0c;方便以后自己查询。 nginx配置完index.html测试文件&#xff0c;发现一直显示的404页面。 我跑到服务器上想重启一下nginx …

强大易用的开源 建站工具Halo

特点 可插拔架构 Halo 采用可插拔架构&#xff0c;功能模块之间耦合度低、灵活性提高。支持用户按需安装、卸载插件&#xff0c;操作便捷。同时提供插件开发接口以确保较高扩展性和可维护性。 ☑ 支持在运行时安装和卸载插件 ☑ 更加方便地集成三方平台 ☑ 统一的可配置设置表…

《自然语言处理(NLP)的最新进展:Transformers与GPT-4的浅析》

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

openGauss学习笔记-65 openGauss 数据库管理-创建和管理数据库

文章目录 openGauss学习笔记-65 openGauss 数据库管理-创建和管理数据库65.1 前提条件65.2 背景信息65.3 注意事项65.4 操作步骤65.4.1 创建数据库65.4.2 查看数据库65.4.3 修改数据库65.4.4 删除数据库 openGauss学习笔记-65 openGauss 数据库管理-创建和管理数据库 65.1 前提…

解决deepspeed框架的bug:不保存调度器状态,模型训练重启时学习率从头开始

deepspeed存在一个bug&#xff0c;即在训练时不保存调度器状态&#xff0c;因此如果训练中断后再重新开始训练&#xff0c;调度器还是会从头开始而不是接着上一个checkpoint的调度器状态来训练。这个bug在deepspeed的github中也有其他人提出&#xff1a;https://github.com/mic…

【广州华锐互动】AR技术在配电系统运维中的应用

随着科技的不断发展&#xff0c;AR(增强现实)技术逐渐走进了我们的生活。在电力行业&#xff0c;AR技术的应用也为巡检工作带来了许多新突破&#xff0c;提高了巡检效率和安全性。本文将从以下几个方面探讨AR配电系统运维系统的新突破。 首先&#xff0c;AR技术可以实现虚拟巡检…

Android Jetpack架构组件库:Hilt

一、开发者官网关于Hilt库使用链接如下 使用 Hilt 实现依赖项注入 Hilt版本说明 二、工程目录图 请点击下面工程名称&#xff0c;跳转到代码的仓库页面&#xff0c;将工程 下载下来 Demo Code 里有详细的注释 代码&#xff1a;LearnJetpack-hilt&#xff1a;hilt版本2.48 代…

Redis集群3.2.11离线安装详细版本(使用Ruby)

1.安装软件准备 1.Redis版本下载 Index of /releases/http://download.redis.io/releases/ 1.2gcc环境准备 GCC(GNU Compiler Collection,GNU编译器套件)是一套用于编译程序代码的开源编译器工具集。它的主要用途是将高级编程语言(如C、C++、Fortran等)编写的源代码转换…

【项目 计网12】4.32UDP通信实现 4.33广播 4.34组播 4.35本地套接字通信

文章目录 4.32UDP通信实现udp_client.cudp_server.c 4.33广播bro_server.cbro_client.c 4.34组播multi_server.cmulti_client.c 4.35本地套接字通信ipc_server.cipc_client.c 4.32UDP通信实现 udp_client.c #include <stdio.h> #include <stdlib.h> #include <…

vmware网卡(网络适配器)桥接、NAT、仅主机3种模式解析

Bridged&#xff08;桥接模式&#xff09;、NAT&#xff08;网络地址转换模式&#xff09;、Host-Only&#xff08;仅主机模式&#xff09; Windows系统安装好vmware后&#xff0c;在网络连接中会生成VMnet1和VMnet8两个虚拟网卡。 VMnet1作用于仅主机模式&#xff0c;VMnet8作…

目标检测笔记(十五): 使用YOLOX完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)

文章目录 一、目标检测介绍二、YOLOX介绍三、源码获取四、环境搭建4.1 环境检测 五、数据集准备六、模型训练七、模型验证八、模型测试 一、目标检测介绍 目标检测&#xff08;Object Detection&#xff09;是计算机视觉领域的一项重要技术&#xff0c;旨在识别图像或视频中的…