elasticsearch篇:DSL查询语法

1.DSL查询文档

众所周知,elasticsearch的查询依然是基于JSON风格的DSL来实现的。

1.1. DSL查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用,例如: match_all
  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

        match_query

        multi_match_query

  • 精确查询:根据精确词条值查找数据,一般是查找keyword,数值,日期,boolean等类型字段,例如:

        ids

        range

        term

  • 地理(geo)查询:根据经纬度查询,例如

        geo_distance

        geo_bounding_box

  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件,例如:

        bool

        function_score

查询的语法基本一致:

GET /indexName/_search
{"query": {"查询类型": {"查询条件": "条件值"}}
}

我们以查询所有为例,其中:

  • 查询类型为match_all

  • 没有查询条件

GET /indexName/_search
{"query" :{"match_all":{}}
}

其它查询无非就是查询类型查询条件的变化。

1.2.全文检索查询

1.2.1.使用场景

全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条

  • 根据词条去倒排索引库中匹配,得到文档id

  • 根据文档id找到文档,返回给用户

比较常用的场景包括:

  • 商城的输入框搜索

  • 百度输入框搜索

例如京东:                            

       ​​   

因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。

1.2.2.基本语法

常见的全文检索查询包括:

  • match查询:单字段查询

  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

GET /indexName/_search
{"query": {"match": {"FIELD": "TEXT"}}
}#举例:
# match查询
GET /hotel/_search
{"query": {"match": {"all": "外滩如家"}}
}

mulit_match语法如下:

GET /indexName/_search
{"query": {"multi_match": {"query": "TEXT","fields": ["FIELD1", " FIELD12"]}}
}#举例
# multi_match查询
GET /hotel/_search
{"query": {"multi_match": {"query": "外滩如家","fields": ["brand","name","business"]}}
}

                                

可以看到,两种查询结果是一样的,为什么?

因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。

但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

1.2.4.总结

match和multi_match的区别是什么?

  • match:根据一个字段查询

  • multi_match:根据多个字段查询,参与查询字段越多,查询性能越差

1.3. 精准查询

1.3.1.term查询

因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

语法说明:

// term查询
GET /indexName/_search
{"query": {"term": {"FIELD": {"value": "VALUE"}}}
}

示例:

当我搜索的是精确词条时,能正确查询出结果:

但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:

1.3.2.range查询

范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

基本语法:

// range查询
GET /indexName/_search
{"query": {"range": {"FIELD": {"gte": 10, // 这里的gte代表大于等于,gt则代表大于"lte": 20 // lte代表小于等于,lt则代表小于}}}
}

       示例:

1.3.3.总结

精确查询常见的有哪些?

  • term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段

  • range查询:根据数值范围查询,可以是数值、日期的范围

1.4.地理坐标查询

所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:Geo queries | Elasticsearch Guide [8.12] | Elastic

常见的使用场景包括:

  • 携程:搜索我附近的酒店

  • 滴滴:搜索我附近的出租车

  • 微信:搜索我附近的人

附近的酒店:

1.4.1.矩形范围查询

矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:

                        

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法如下:

// geo_bounding_box查询
GET /indexName/_search
{"query": {"geo_bounding_box": {"FIELD": {"top_left": { // 左上点"lat": 31.1,"lon": 121.5},"bottom_right": { // 右下点"lat": 30.9,"lon": 121.7}}}}
}

这种并不符合“附近的人”这样的需求,所以我们就不做了。

1.4.2.附近查询

附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。

换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

语法说明:

// geo_distance 查询
GET /indexName/_search
{"query": {"geo_distance": {"distance": "15km", // 半径"FIELD": "31.21,121.5" // 圆心}}
}

示例:

我们先搜索陆家嘴附近15km的酒店:

发现共有47家酒店。

然后把半径缩短到3公里:

可以发现,搜索到的酒店数量减少到了5家。

1.5.复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名

  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

1.5.1.相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

例如,我们搜索 "虹桥如家",结果如下:

[{"_score" : 17.850193,"_source" : {"name" : "虹桥如家酒店真不错",}},{"_score" : 12.259849,"_source" : {"name" : "外滩如家酒店真不错",}},{"_score" : 11.91091,"_source" : {"name" : "迪士尼如家酒店真不错",}}
]

在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:

        

在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:

                

TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

        

小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:

  • TF-IDF算法

  • BM25算法,elasticsearch5.1版本后采用的算法

1.5.2.算分函数查询

根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:

要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。

1)语法说明

         

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)

  • 过滤条件:filter部分,符合该条件的文档才会重新算分

  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数

    • weight:函数结果是常量

    • field_value_factor:以文档中的某个字段值作为函数结果

    • random_score:以随机数作为函数结果

    • script_score:自定义算分函数算法

  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:

    • multiply:相乘

    • replace:用function score替换query score

    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)

  • 2)根据过滤条件,过滤文档

  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)

  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改

  • 算分函数:决定函数算分的算法

  • 运算模式:决定最终算分结果

2)示例

需求:给“如家”这个品牌的酒店排名靠前一些

翻译一下这个需求,转换为之前说的四个要点:

  • 原始条件:不确定,可以任意变化

  • 过滤条件:brand = "如家"

  • 算分函数:可以简单粗暴,直接给固定的算分结果,weight

  • 运算模式:比如求和

因此最终的DSL语句如下:

GET /hotel/_search
{"query": {"function_score": {"query": {  .... }, // 原始查询,可以是任意条件"functions": [ // 算分函数{"filter": { // 满足的条件,品牌必须是如家"term": {"brand": "如家"}},"weight": 2 // 算分权重为2}],"boost_mode": "sum" // 加权模式,求和}}
}

测试,在未添加算分函数时,如家得分如下:

添加了算分函数后,如家得分就提升了:  

3)小结

function score query定义的三要素是什么?

  • 过滤条件:哪些文档要加分

  • 算分函数:如何计算function score

  • 加权方式:function score 与 query score如何运算

1.5.3.布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”

  • should:选择性匹配子查询,类似“或”

  • must_not:必须不匹配,不参与算分,类似“非”

  • filter:必须匹配,不参与算分

比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:

        

每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分

  • 其它过滤条件,采用filter查询。不参与算分

1)语法示例:
# Boolean Query查询
GET /hotel/_search
{"query": {"bool": {"must": [{"term": {"city": "上海"}}],"should": [{"term": {"brand": "皇冠假日"}},{"term": {"brand": "华美达"}}],"must_not": [{"range": {"price": {"lte": 500}}}],"filter": [{"range": {"score": {"gte": 45 }}}]}}
}
2)示例

需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

分析:

  • 名称搜索,属于全文检索查询,应该参与算分。放到must中

  • 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中

  • 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中

GET /hotel/_search
{"query": {"bool": {"must": [{"match":{"name": "如家"}}],"must_not": [{"range": {"price": {"gte": 400}}}],"filter": [{"geo_distance": {"distance": "10km","location": {"lat": 31.21,"lon": 121.5}}}]}}
}

3)小结

bool查询有几种逻辑关系?

  • must:必须匹配的条件,可以理解为“与”

  • should:选择性匹配的条件,可以理解为“或”

  • must_not:必须不匹配的条件,不参与打分

  • filter:必须匹配的条件,不参与打分

2.搜索结果处理

搜索的结果可以按照用户指定的方式去处理或展示。

2.1.排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

2.1.1.普通字段排序

keyword、数值、日期类型排序的语法基本一致。

语法

GET /indexName/_search
{"query": {"match_all": {}},"sort": [{"FIELD": "desc"  // 排序字段、排序方式ASC、DESC}]
}

排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推

示例

需求描述:酒店数据按照用户评价(score)降序排序,评价相同的按照价格(price)升序排序

2.1.2.地理坐标排序

地理坐标排序略有不同。

语法说明

GET /indexName/_search
{"query": {"match_all": {}},"sort": [{"_geo_distance" : {"FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点"order" : "asc", // 排序方式"unit" : "km" // 排序的距离单位}}]
}

这个查询的含义是:

  • 指定一个坐标,作为目标点

  • 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少

  • 根据距离排序

示例:

需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序

提示:获取你的位置的经纬度的方式:获取鼠标点击经纬度-地图属性-示例中心-JS API 2.0 示例 | 高德地图API

假设我的位置是:31.034661,121.612282,寻找我周围距离最近的酒店

2.2.分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:

  • from:从第几个文档开始

  • size:总共查询几个文档

类似于mysql中的limit ?, ?

2.2.1.基本的分页

分页的基本语法如下:

GET /hotel/_search
{"query": {"match_all": {}},"from": 0, // 分页开始的位置,默认为0"size": 10, // 期望获取的文档总数"sort": [{"price": "asc"}]
}

2.2.2.深度分页问题

现在,我要查询990~1000的数据,查询逻辑要这么写:

GET /hotel/_search
{"query": {"match_all": {}},"from": 990, // 分页开始的位置,默认为0"size": 10, // 期望获取的文档总数"sort": [{"price": "asc"}]
}

这里是查询990开始的数据,也就是 第990~第1000条 数据。

不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:

        

查询TOP1000,如果es是单点模式,这并无太大影响。

但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。

因为节点A的TOP200,在另一个节点可能排到10000名以外了。

因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。

那如果我要查询9900~10000的数据呢?是不是要先查询TOP10000呢?那每个节点都要查询10000条?汇总到内存中?

当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,ES提供了两种解决方案,官方文档:

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。

  • scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。

2.2.3.小结

分页查询的常见实现方案以及优缺点:

  • from + size

    • 优点:支持随机翻页

    • 缺点:深度分页问题,默认查询上限(from + size)是10000

    • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索

  • after search

    • 优点:没有查询上限(单次查询的size不超过10000)

    • 缺点:只能向后逐页查询,不支持随机翻页

    • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页

  • scroll

    • 优点:没有查询上限(单次查询的size不超过10000)

    • 缺点:会有额外内存消耗,并且搜索结果是非实时的

    • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。

2.3.高亮

2.3.1.高亮原理

什么是高亮显示呢?

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:

高亮显示的实现分为两步:

  • 1)给文档中的所有关键字都添加一个标签,例如<em>标签

  • 2)页面给<em>标签编写CSS样式

2.3.2.实现高亮

高亮的语法

GET /hotel/_search
{"query": {"match": {"FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询}},"highlight": {"fields": { // 指定要高亮的字段"FIELD": {"pre_tags": "<em>",  // 用来标记高亮字段的前置标签"post_tags": "</em>" // 用来标记高亮字段的后置标签}}}
}

注意:

  • 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。

  • 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮

  • 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false

示例

2.4.总结

查询的DSL是一个大的JSON对象,包含下列属性:

  • query:查询条件

  • from和size:分页条件

  • sort:排序条件

  • highlight:高亮条件

示例:

                 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/747367.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Sublime Text简介、下载、安装、汉化、常用插件和激活——《跟老吕学Python编程》附录资料

Sublime Text简介、下载、安装、汉化、常用插件和激活——《跟老吕学Python编程》附录资料 Sublime Text 简介Sublime Text 下载、安装、汉化、常用插件和激活Sublime Text 官网Sublime Text 下载Sublime Text 安装1.安装2.右键菜单3.启动安装4.耐心等待5.安装完成 Sublime Tex…

计算机网络 谢希仁(001-2)

计算机网络-方老师 总时长 24:45:00 共50个视频&#xff0c;6个模块 此文章包含1.5到1.7的内容 1.5计算机网络类别 连通 共享 分类方法 广域网是边缘部分和核心部分的核心部分 以前是拨号连接 现在是光纤 总线型 星型 环形网 1.6计算机网络的性能 带上单位之后就不是…

蓝桥杯历年真题省赛java b组2016年第七届

一、题目 取球博弈 两个人玩取球的游戏。 一共有N个球&#xff0c;每人轮流取球&#xff0c;每次可取集合{n1,n2,n3}中的任何一个数目。 如果无法继续取球&#xff0c;则游戏结束。 此时&#xff0c;持有奇数个球的一方获胜。 如果两人都是奇数&#xff0c;则为平局。 假设双…

专业款希亦、小米、必胜、云鲸洗地机怎么样?深度测评利弊

洗地机可以说是一种非常实用的清洁工具&#xff0c;尤其是对于那些需要经常给家里地板清洁的人来说。它能够高效、彻底清洁地板&#xff0c;去除顽固污渍、灰尘和细菌&#xff0c;让家居环境更加洁净卫生。可是面对型号繁多的洗地机&#xff0c;我们应该怎么挑选呢&#xff1f;…

PTA题解 --- N个数求和(C语言)

今天是PTA题库解法讲解的第二天&#xff0c;今天我们要讲解N个数求和&#xff0c;题目如下&#xff1a; 要解决这个问题&#xff0c;我们可以用C语言编写一个程序来处理和简化分数。程序的基本思路如下&#xff1a; 1. 定义一个函数来计算两个数的最大公约数&#xff08;GCD&a…

sqllab第二十三关通关笔记

知识点&#xff1a; mysqli_query() 返回值为资源型或布尔型如果内容为查询语句则返回资源型数据&#xff1b;如果内容为插入、更新、删除等语句则返回布尔类型结果mysql_fetch_array() 从结果集中取出一行作为关联数组或数字数组输入内容为指定查询的结果集单引号闭合绕过联…

分享5款占用系统资源少的软件

​ 在日常使用电脑时&#xff0c;我们需要各种软件来完成任务。以下是几款小巧但功能齐全的软件推荐。 1. 虚拟机软件——VirtualBox ​ VirtualBox是一款开源的虚拟机软件&#xff0c;允许用户在单一物理计算机上创建和运行多个虚拟操作系统。它支持多种操作系统&#xff0c…

【DFS算法】排列数字——acwing 842

问题描述 给定一个整数 n&#xff0c;将数字 1∼n 排成一排&#xff0c;将会有很多种排列方法。 现在&#xff0c;请你按照字典序将所有的排列方法输出。 输入格式 共一行&#xff0c;包含一个整数 n。 输出格式 按字典序输出所有排列方案&#xff0c;每个方案占一行。 数…

Starknet 训练营 Demo Day 顺利举办!获奖选手勇攀 Starknet 开发新高峰!

当全链游戏成为 2024 年 Web3 行业的热门关键词时&#xff0c;你是否注意到了一个冉冉升起的潜力生态——Starknet&#xff1f; Starknet 是基于 ZK-Rollup 技术的去中心化 L2 协议。由于其基于一种高度可扩展的密码学证明系统&#xff0c;便称为 STARK&#xff0c;使 DApp 能…

搭建一个自己的AI学术语音助手(一)

背景&#xff1a; 大模型出来后语音助手借着LLM的语义理解、知识组织能力的提升&#xff0c;升级了一波buffer。然后在使用这些语音助手的时候总觉得缺了点什么&#xff0c;但也讲不出来具体缺了什么。这几天的思考突然有了灵感&#xff0c;其实缺的就是自己的知识内容如何变成…

F-logic DataCube3 任意文件上传漏洞复现(CVE-2024-25832)

0x01 产品简介 F-logic DataCube3是一款用于光伏发电系统的紧凑型终端测量系统。 0x02 漏洞概述 F-logic DataCube3 /admin/setting_photo.php接口处存在任意文件上传漏洞 ,未经身份验证的攻击者可通过该漏洞在服务器端写入后门,获取服务器权限,进而控制整个web服务器。 …

陪诊系统平台的功能优势

便捷性&#xff1a;小程序基于移动互联网&#xff0c;用户可以随时随地通过手机或其他智能设备使用&#xff0c;无需亲自前往医院&#xff0c;从而节省了时间和精力。这种便捷性使得用户能够迅速获取相关信息&#xff0c;并进行预约等操作。 全面的信息服务&#xff1a;小程序提…

面向对象编程第二式:继承 (Java篇)

本篇会加入个人的所谓‘鱼式疯言’ ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. &#x1f92d;&#x1f92d;&#x1f92d;可能说的不是那么严谨.但小编初心是能让更多人…

在OpenStack架构中,Controller节点的配置(基础)

虚拟机的安装 新建虚拟机&#xff0c;选择自定义 默认选择即可 操作系统的镜像稍后选择 客户及操作系统选择Linux&#xff0c;注意选择centos 7 64位 给虚拟机命名 处理器的配置建议1&#xff1a;2 内存大小选择建议为&#xff1a;4GB 网络连接选择为&#xff1a;NAT 默认即可…

【机器学习】走进监督学习:构建智能预测模型的第一步

&#x1f388;个人主页&#xff1a;豌豆射手^ &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;机器学习 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进…

Docker 安装部署 ORACLE 11g数据库

Docker 安装部署 ORACLE 11g数据库 背景&#xff1a; ​ 最新在开发数据中台数据接入模块&#xff0c;其中设计很多数据类型&#xff0c;包括ORACLE &#xff0c;因为是测试使用&#xff0c;想着快速部署测试&#xff0c;于是使用Docker 部署 Oracle , 生产环境不建议使用Doc…

YOLOv7-Openvino和ONNXRuntime推理【CPU】

纯检测系列&#xff1a; YOLOv5-Openvino和ONNXRuntime推理【CPU】 YOLOv6-Openvino和ONNXRuntime推理【CPU】 YOLOv8-Openvino和ONNXRuntime推理【CPU】 YOLOv7-Openvino和ONNXRuntime推理【CPU】 YOLOv9-Openvino和ONNXRuntime推理【CPU】 跟踪系列&#xff1a; YOLOv5/6/7-O…

onecloud刷CasaOS系统后如何安装内网穿透实现公网访问本地文件

文章目录 1. CasaOS系统介绍2. 内网穿透安装3. 创建远程连接公网地址4. 创建固定公网地址远程访问 2月底&#xff0c;玩客云APP正式停止运营&#xff0c;不再提供上传、云添加功能。3月初&#xff0c;有用户进行了测试&#xff0c;局域网内的各种服务还能继续使用&#xff0c;但…

十二、项目采购管理

十二、项目采购管理 1、规划采购管理 ​ 规划采购管理是记录项目采购决策、明确采购方法&#xff0c;及识别潜在卖方的过程。 1,1、关键输入 组织过程资产 组织使用的各种合同协议类型也会影响规划采购管理过程中的决策。能够影响规划采购管理过程的组织过程资产包括&#xf…

力扣爆刷第96天之hot100五连刷66-70

力扣爆刷第96天之hot100五连刷66-70 文章目录 力扣爆刷第96天之hot100五连刷66-70一、33. 搜索旋转排序数组二、153. 寻找旋转排序数组中的最小值三、4. 寻找两个正序数组的中位数四、20. 有效的括号五、155. 最小栈 一、33. 搜索旋转排序数组 题目链接&#xff1a;https://le…