9种分布式ID生成之美团(Leaf)实战

​​​​​

前几天写过一篇《一口气说出 9种 分布式ID生成方式,面试官有点懵了》,里边简单的介绍了九种分布式ID生成方式,但是对于像美团(Leaf)滴滴(Tinyid)百度(uid-generator)都是一笔带过。而通过读者留言发现,大家普遍对他们哥三更感兴趣,所以后边会结合实战,详细的对三种分布式ID生成器学习,今天先啃下美团(Leaf)

不了解分布式ID的同学,先行去看《一口气说出 9种 分布式ID生成方式,面试官有点懵了》温习一下基础知识,这里就不再赘述了

美团(Leaf)

Leaf是美团推出的一个分布式ID生成服务,名字取自德国哲学家、数学家莱布尼茨的一句话:“There are no two identical leaves in the world.”(“世界上没有两片相同的树叶”),取个名字都这么有寓意,美团程序员牛掰啊!

Leaf的优势:高可靠低延迟全局唯一等特点。

目前主流的分布式ID生成方式,大致都是基于数据库号段模式雪花算法(snowflake),而美团(Leaf)刚好同时兼具了这两种方式,可以根据不同业务场景灵活切换。

接下来结合实战,详细的介绍一下LeafLeaf-segment号段模式Leaf-snowflake模式

一、 Leaf-segment号段模式

Leaf-segment号段模式是对直接用数据库自增ID充当分布式ID的一种优化,减少对数据库的频率操作。相当于从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,业务服务将号段在本地生成1~1000的自增ID并加载到内存.。

大致的流程入下图所示:
在这里插入图片描述
号段耗尽之后再去数据库获取新的号段,可以大大的减轻数据库的压力。对max_id字段做一次update操作,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。

由于依赖数据库,我们先设计一下表结构:

CREATE TABLE `leaf_alloc` (`biz_tag` varchar(128) NOT NULL DEFAULT '' COMMENT '业务key',`max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id',`step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长',`description` varchar(256) DEFAULT NULL COMMENT '业务key的描述',`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间',PRIMARY KEY (`biz_tag`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

预先插入一条测试的业务数据

INSERT INTO `leaf_alloc` (`biz_tag`, `max_id`, `step`, `description`, `update_time`) VALUES ('leaf-segment-test', '0', '10', '测试', '2020-02-28 10:41:03');
  • 1
  • biz_tag:针对不同业务需求,用biz_tag字段来隔离,如果以后需要扩容时,只需对biz_tag分库分表即可

  • max_id:当前业务号段的最大值,用于计算下一个号段

  • step:步长,也就是每次获取ID的数量

  • description:对于业务的描述,没啥好说的

将Leaf项目下载到本地:https://github.com/Meituan-Dianping/Leaf

修改一下项目中的leaf.properties文件,添加数据库配置

leaf.name=com.sankuai.leaf.opensource.test
leaf.segment.enable=true
leaf.jdbc.url=jdbc:mysql://127.0.0.1:3306/xin-master?useUnicode=true&characterEncoding=utf8
leaf.jdbc.username=junkang
leaf.jdbc.password=junkangleaf.snowflake.enable=false

注意leaf.snowflake.enable 与 leaf.segment.enable 是无法同时开启的,否则项目将无法启动。

配置相当的简单,直接启动LeafServerApplication后就OK了,接下来测试一下,leaf是基于Http请求的发号服务, LeafController 中只有两个方法,一个号段接口,一个snowflake接口,key就是数据库中预先插入的业务biz_tag


@RestController
public class LeafController {private Logger logger = LoggerFactory.getLogger(LeafController.class);@Autowiredprivate SegmentService segmentService;@Autowiredprivate SnowflakeService snowflakeService;/*** 号段模式* @param key* @return*/@RequestMapping(value = "/api/segment/get/{key}")public String getSegmentId(@PathVariable("key") String key) {return get(key, segmentService.getId(key));}/*** 雪花算法模式* @param key* @return*/@RequestMapping(value = "/api/snowflake/get/{key}")public String getSnowflakeId(@PathVariable("key") String key) {return get(key, snowflakeService.getId(key));}private String get(@PathVariable("key") String key, Result id) {Result result;if (key == null || key.isEmpty()) {throw new NoKeyException();}result = id;if (result.getStatus().equals(Status.EXCEPTION)) {throw new LeafServerException(result.toString());}return String.valueOf(result.getId());}
}

访问:http://127.0.0.1:8080/api/segment/get/leaf-segment-test,结果正常返回,感觉没毛病,但当查了一下数据库表中数据时发现了一个问题。
在这里插入图片描述
在这里插入图片描述
通常在用号段模式的时候,取号段的时机是在前一个号段消耗完的时候进行的,可刚刚才取了一个ID,数据库中却已经更新了max_id,也就是说leaf已经多获取了一个号段,这是什么鬼操作?
在这里插入图片描述

Leaf为啥要这么设计呢?

Leaf 希望能在DB中取号段的过程中做到无阻塞!

当号段耗尽时再去DB中取下一个号段,如果此时网络发生抖动,或者DB发生慢查询,业务系统拿不到号段,就会导致整个系统的响应时间变慢,对流量巨大的业务,这是不可容忍的。

所以Leaf在当前号段消费到某个点时,就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做很大程度上的降低了系统的风险。

那么某个点到底是什么时候呢?

这里做了一个实验,号段设置长度为step=10max_id=1
在这里插入图片描述
当我拿第一个ID时,看到号段增加了,1/10
在这里插入图片描述
在这里插入图片描述
当我拿第三个Id时,看到号段又增加了,3/10
在这里插入图片描述
在这里插入图片描述
Leaf采用双buffer的方式,它的服务内部有两个号段缓存区segment。当前号段已消耗10%时,还没能拿到下一个号段,则会另启一个更新线程去更新下一个号段。

简而言之就是Leaf保证了总是会多缓存两个号段,即便哪一时刻数据库挂了,也会保证发号服务可以正常工作一段时间。

在这里插入图片描述
通常推荐号段(segment)长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20分钟不受影响。

优点:

  • Leaf服务可以很方便的线性扩展,性能完全能够支撑大多数业务场景。
  • 容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内Leaf仍能正常对外提供服务。

缺点:

  • ID号码不够随机,能够泄露发号数量的信息,不太安全。
  • DB宕机会造成整个系统不可用(用到数据库的都有可能)。
二、Leaf-snowflake

Leaf-snowflake基本上就是沿用了snowflake的设计,ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 机房ID(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。

Leaf-snowflake不同于原始snowflake算法地方,主要是在workId的生成上,Leaf-snowflake依靠Zookeeper生成workId,也就是上边的机器ID(占5比特)+ 机房ID(占5比特)。Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。

在这里插入图片描述
Leaf-snowflake启动服务的过程大致如下:

  • 启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)。
  • 如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务。
  • 如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务。

Leaf-snowflake对Zookeeper是一种弱依赖关系,除了每次会去ZK拿数据以外,也会在本机文件系统上缓存一个workerID文件。一旦ZooKeeper出现问题,恰好机器出现故障需重启时,依然能够保证服务正常启动。

启动Leaf-snowflake模式也比较简单,起动本地ZooKeeper,修改一下项目中的leaf.properties文件,关闭leaf.segment模式,启用leaf.snowflake模式即可。

leaf.segment.enable=false
#leaf.jdbc.url=jdbc:mysql://127.0.0.1:3306/xin-master?useUnicode=true&characterEncoding=utf8
#leaf.jdbc.username=junkang
#leaf.jdbc.password=junkangleaf.snowflake.enable=true
leaf.snowflake.zk.address=127.0.0.1
leaf.snowflake.port=2181
    /*** 雪花算法模式* @param key* @return*/@RequestMapping(value = "/api/snowflake/get/{key}")public String getSnowflakeId(@PathVariable("key") String key) {return get(key, snowflakeService.getId(key));}

测试一下,访问:http://127.0.0.1:8080/api/snowflake/get/leaf-segment-test
在这里插入图片描述
优点:

  • ID号码是趋势递增的8byte的64位数字,满足上述数据库存储的主键要求。

缺点:

  • 依赖ZooKeeper,存在服务不可用风险(实在不知道有啥缺点了)
三、Leaf监控

请求地址:http://127.0.0.1:8080/cache

针对服务自身的监控,Leaf提供了Web层的内存数据映射界面,可以实时看到所有号段的下发状态。比如每个号段双buffer的使用情况,当前ID下发到了哪个位置等信息都可以在Web界面上查看。

在这里插入图片描述

总结

对于Leaf具体使用哪种模式,还是根据具体的业务场景使用,本文并没有对Leaf源码做过多的分析,因为Leaf 代码量简洁很好阅读。后续还会把其他几种分布式ID生成器,依次结合实战介绍给大家,欢迎大家关注。


今天就说这么多,如果本文对您有一点帮助,希望能得到您一个点赞👍哦

您的认可才是我写作的动力!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/745279.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Hadoop,Hive 数据预处理CR

记录一次大材小用,我在将.csv电影数据集 电影json数据 导入MySQL时,出现了报错: 很明显,意味着.csv中的数据有非utf8编码的, 尝试使用file查看了下.csv文件的编码格式: 如果不确定原始编码,可以先用file命令尝试检测一下: file -i input.csv该命令会显示文件的MIME类型…

Hive3.0.0安装初始化过程,schematool -dbType mysql -initSchema报错

详细如下: 从字面意思理解,是在hive-site.xml文件3213行出现了非法字符,处理步骤如下 1、使用vi 3213 hive-site.xml打开文件 2、删除“&#8”,保存文件 3、再次执行初始化命令 schematool -dbType mysql -initSchema 4、登…

Xcode15.3 -Library ‘iconv2.4.0‘ not found

今天升级了一下Mac mini 和Xcode15.3,运行项目就报 Library ‘iconv2.4.0’ not found的错误 xcode升级到:15.3(15A240d) 项目在旧版本下,是能通过编译 并且能运行的。 解决方法: 方案1:在Build Phases --> Link…

华为OD技术C卷“测试用例执行计划”Java解答

描述 示例 算法思路1 整体思路是,先读取特性的优先级和测试用例覆盖的特性列表,然后计算每个测试用例的优先级,并将其与测试用例的索引存储到二维数组中。最后按照优先级和索引排序,输出测试用例的索引,即为执行顺序。…

网络编程套接字(4)——Java套接字(TCP协议)

目录 一、Java流套接字通信模型 二、TCP流套接字编程 1、ServerSocket ServerSocket构造方法: ServerSocket方法: 2、Socket Socket构造方法: Socket方法: 三、代码示例:回显服务器 1、服务器代码 代码解析 2、客户端…

配置阿里云加速器

国内镜像中心常用阿里云或者网易云。在本地docker中指定要使用国内加速器的地址后&#xff0c;就可以直接从阿里云镜像中心下载镜像。 2024阿里云-上云采购季-阿里云 [rootlocalhost /]# mkdir -p /etc/docker [rootlocalhost /]# tee /etc/docker/daemon.json <<-EOF &…

windows 安装 gitlab-runner CICD

点击搜索图标 手动输入PowerShell, 右键点击管理员权限打开&#xff0c; 一、安装 安装 gitlab runner 文档参考地址 1、下载exe执行文件 我这里是 win64 https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe 2、创建 gitla…

论文研读笔记2

1.Han异构图网络看不懂。。。正在看 https://zhuanlan.zhihu.com/p/346658317 https://www.bilibili.com/video/BV1fc411z7mx?p19&vd_source6fb54905ed1c5c332b7a606643d8525c 2. 阅读论文&#xff1a;Learning Long- and Short-Term User Literal-Preference with Mu…

Java日志框架Log4j 2详解

有时希望能够以文件的形式记录执行过程中出现的异常信息&#xff0c;甚至记录程序正常运行的关键步骤&#xff0c;以便日后查看&#xff0c;那么该如何处理呢? 答:显然&#xff0c;可以自行编程实现这个需求&#xff0c;但是&#xff0c;从更注重效率和性能的方面考虑&#x…

物联网终端telegraf采集设备信息

背景 低功耗设备上资源有限&#xff0c;但又比较重要。对其的管理难度很大&#xff0c;有些时候又必须时刻了解其运行状况。我们自然想到的是能否有办法监控它呢&#xff1f;当时是有的&#xff01;而且很成熟的解决方案。TICK技术栈&#xff0c;那TICK是什么呢&#xff1f; TI…

【剪枝实战】使用VGGNet训练、稀疏训练、剪枝、微调等,剪枝出只有3M的模型

摘要 本次剪枝实战是基于下面这篇论文去复现的&#xff0c;主要是实现对BN层的γ/gamma进行剪枝操作&#xff0c;本文用到的代码和数据集都可以在我的资源中免费下载到。 相关论文&#xff1a;Learning Efficient Convolutional Networks through Network Slimming (ICCV 2017…

Ubuntu18.04下opencv基础操作(打开图片及视频)

文章目录 一、认识opencv一、编写一个打开图片进行特效显示的代码二、使用opencv库编写打开摄像头压缩视频的程序2.1 虚拟机获取摄像头权限2.2 播放视频2.3 录制视频 三、总结四、参考资料 一、认识opencv 开源计算机视觉(OpenCV)是一个主要针对实时计算机视觉的编程函数库。 …

WanAndroid(鸿蒙版)开发的第四篇

前言 DevEco Studio版本&#xff1a;4.0.0.600 WanAndroid的API链接&#xff1a;玩Android 开放API-玩Android - wanandroid.com 其他篇文章参考&#xff1a; 1、WanAndroid(鸿蒙版)开发的第一篇 2、WanAndroid(鸿蒙版)开发的第二篇 3、WanAndroid(鸿蒙版)开发的第三篇 …

Gitee 服务器

Git 服务器集成 1. 创建仓库 2. 远程仓库简易操作指令 # Git 全局设置&#xff0c;修改成自己的信息 git config --global user.name "Muko" git config --global user.email "txk0x7d2163.com" # 创建 git 仓库&#xff0c;基本操作指令和其他远程仓库一…

Ps 滤镜:中间值

Ps菜单&#xff1a;滤镜/杂色/中间值 Filter/Noise/Median 中间值 Median滤镜可用于减少或消除图像中的噪点和杂色&#xff0c;同时能较好地保留图像边缘和细节信息。 中间值滤镜通过计算一个像素周围一定区域内的像素值的中间值&#xff08;即这些值的中位数&#xff09;&…

群集----Memcached

一、NoSQL介绍 NoSQL是对 Not Only SQL、非传统关系型数据库的统称。 NoSQL一词诞生于1998年&#xff0c;2009年这个词汇被再次提出指非关系型、分布式、不提供ACID的数据库设计模式。 随着互联网时代的到来&#xff0c;数据爆发式增长&#xff0c;数据库技术发展日新月异&a…

怎么避免电脑数据被拷贝?电脑如何禁用USB功能?

在无纸化办公的今天&#xff0c;很多重要数据都存放在电脑中。为了避免数据泄露&#xff0c;需要采用安全的方式保护电脑数据。那么&#xff0c;该如何避免电脑数据被拷贝呢&#xff1f;下面我们就来了解一下。 方法一&#xff1a;物理隔绝 物理隔绝是一种原始但有效的USB禁用…

《小程序从入门到入坑》框架语法

前言 哈喽大家好&#xff0c;我是 SuperYing&#xff0c;我们继续小程序入门系列&#xff0c;本文将对小程序框架语法进行比较全面的介绍。在《小程序从入门到入坑》简介及工程创建中&#xff0c;我们提到小程序项目结构&#xff0c;主要包括 app.json&#xff0c;app.js&…

STM32初识1

什么是单片机&#xff1f; 单片机&#xff08; Single-Chip Microcomputer &#xff09;是一种集成电路芯片&#xff0c;把具有数据处理能力的中央处 理器 CPU 、随机存储器 RAM 、只读存储器 ROM 、多种 I/O 口和中断系统、定时器 / 计数器等功 能&#xff08;可能还包括显示…

部署快捷、使用简单、推理高效!大模型部署和推理框架 Xinference 来了!

今天为大家介绍一款大语言模型&#xff08;LLM&#xff09;部署和推理工具——Xinference[1]&#xff0c;其特点是部署快捷、使用简单、推理高效&#xff0c;并且支持多种形式的开源模型&#xff0c;还提供了 WebGUI 界面和 API 接口&#xff0c;方便用户进行模型部署和推理。 …