Linux 多进程开发(上)

第二章 Linux 多进程开发

      • 2.1 进程概述
      • 2.2 进程状态转换
      • 2.3 进程创建
      • 2.4 exec 函数族
      • 2.5 进程控制

网络编程系列文章

第1章 Linux系统编程入门(上)
第1章 Linux系统编程入门(下)

第2章 Linux多进程开发(上)
第2章 Linux多进程开发(下)

第3章 Linux多线程开发

第4章 Linux网络编程

  • 4.1 网络基础
  • 4.2 socket 通信基础
  • 4.3 TCP套接字通信
  • 4.4 IO多路复用
  • 4.5 UDP 通信


第5章 Web服务器

2.1 进程概述

(1)程序和进程

程序是包含一系列信息的文件,这些信息描述了如何在运行时创建一个进程:

  • 二进制格式标识:每个程序文件都包含用于描述可执行文件格式的元信息。内核利用此信息来解释文件中的其他信息。( ELF 可执行连接格式

  • 机器语言指令:对程序算法进行编码。

  • 程序入口地址:标识程序开始执行时的起始指令位置。

  • 数据:程序文件包含的变量初始值和程序使用的字面量值(比如字符串)。

  • 符号表及重定位表:描述程序中函数和变量的位置及名称。这些表格有多重用途,其中包括调试和运行时的符号解析(动态链接)。

  • 共享库和动态链接信息:程序文件所包含的一些字段,列出了程序运行时需要使用的共享库,以及加载共享库的动态连接器的路径名。

  • 其他信息:程序文件还包含许多其他信息,用以描述如何创建进程。

  • 进程是正在运行的程序的实例。是一个具有一定独立功能的程序关于某个数据集合的一次运行活动。它是操作系统动态执行的基本单元,在传统的操作系统中,进程既是基本的分配单元,也是基本的执行单元。

  • 可以用一个程序来创建多个进程,进程是由内核定义的抽象实体,并为该实体分配用 以执行程序的各项系统资源。从内核的角度看,进程由用户内存空间和一系列内核数 据结构组成,其中用户内存空间包含了程序代码及代码所使用的变量,而内核数据结构则用于维护进程状态信息。记录在内核数据结构中的信息包括许多与进程相关的标识号( IDs )、虚拟内存表、打开文件的描述符表、信号传递及处理的有关信息、进程资源使用及限制、当前工作目录和大量的其他信息。

(2)单道、多道程序设计

  • 单道程序,即在计算机内存中只允许一个的程序运行。
  • 多道程序设计技术 是在计算机内存中同时存放几道相互独立的程序,使它们在管理程序控制下,相互穿插运行,两个或两个以上程序在计算机系统中同处于开始到结束之间的状态 , 这些程序共享计算机系统资源。引入多道程序设计技术的根本目的是为了提高 CPU 的利用率。
  • 对于一个单 CPU 系统来说,程序同时处于运行状态只是一种宏观上的概念,他们虽然都已经开始运行,但就微观而言,任意时刻, CPU 上运行的程序只有一个。
  • 在多道程序设计模型中,多个进程轮流使用 CPU 。而当下常见 CPU 为 纳秒级, 1 秒可以执行大约 10 亿条指令。由于人眼的反应速度是毫秒级,所以看似同时在运行。

(3)时间片

  • 时间片timeslice )又称为“量子 ( quantum )” 或 “处理器片 ( processor slice )是操作系统分配给每个正在运行的进程微观上的一段 CPU 时间。事实上,虽然一台计算机通常可能有多个 CPU ,但是同一个 CPU 永远不可能真正地同时运行多个任务。在只考虑一个 CPU 的情况下,这些进程“看起来像”同时运行的,实则是 轮番穿插地运行,由于时间片通常很短(在 Linux 上为 5ms-800ms ),用户不会感觉到。
  • 时间片由操作系统内核的调度程序分配给每个进程。首先,内核会给每个进程分配相等的初始时间片,然后每个进程轮番地执行相应的时间,当所有进程都处于时间片耗尽的状态时,内核会重新为每个进程计算并分配时间片,如此往复。

(4)并行和并发

  • 并行 ( parallel ):指在同一时刻,有多条指令在多个处理器上同时执行。
  • 并发 ( concurrency ):指在同一时刻只能有一条指令执行,但多个进程指令被快速的轮换执行,使得在宏观上具有多个进程同时执行的效果,但在微观上并不是同时执行的,只是把时间分成若干段,使多个进程快速交替的执行。

在这里插入图片描述

(5)进程控制块(PCB)

  • 为了管理进程,内核必须对每个进程所做的事情进行清楚的描述。内核为每个进程分配一个 PCB(Processing Control Block) 进程控制块,维护进程相关的信息,Linux 内核的进程控制块是 task_struct 结构体。

  • /usr/src/linux-headers-xxx/include/linux/sched.h 文件中可以查看 struct task_struct 结构体定义。其内部成员有很多,我们只需要掌握以下部分即可:

    • 进程 id :系统中每个进程有唯一的 id ,用 pid_t 类型表示,其实就是一个非负整数

    • 进程的状态:有就绪、运行、挂起、停止等状态

    • 进程切换时需要保存和恢复的一些 CPU 寄存器

    • 描述 虚拟地址空间 的信息

    • 描述 控制终端 的信息

    • 当前工作目录( Current Working Directory )

    • umask 掩码

    • 文件描述符表,包含很多指向 file 结构体的指针

    • 信号相关的信息

    • 用户 id组 id

    • 会话( Session )和进程组

    • 进程可以使用的资源上限( Resource Limit )

      在这里插入图片描述

2.2 进程状态转换

(1)进程的状态

​ 进程状态反映进程执行过程的变化。这些状态随着进程的执行和外界条件的变化而转换。在三态模型中,进程状态分为三个基本状态,即就绪态,运行态,阻塞态。在五态模型中,进程分为新建态、就绪态,运行态,阻塞态,终止态。

在这里插入图片描述

  • 运行态:进程占有处理器正在运行
  • 就绪态:进程具备运行条件,等待系统分配处理器以便运行。当进程已分配到除 CPU 以外的所有必要资源后,只要再获得 CPU ,便可立即执行。在一个系统中处于就绪状态的进程可能有多个,通常将它们排成一个队列,称为就绪队列
  • 阻塞态:又称为等待 ( wite ) 态或睡眠 ( sleep) 态,指进程不具备运行条件,正在等待某个事件的完成

在这里插入图片描述

  • 新建态:进程刚被创建时的状态,尚未进入就绪队列
  • 终止态:进程完成任务到达正常结束点,或出现无法克服的错误而异常终止,或被操作系统及有终止权的进程所终止时所处的状态。进入终止态的进程以后不再执行,但依然保留在操作系统中等待善后。一旦其他进程完成了对终止态进程的信息抽取之后,操作系统将删除该进程。

(2)进程相关命令

  • 查看进程
    ps aux / ajx

    • a:显示终端上的所有进程,包括其他用户的进程
    • u:显示进程的详细信息
    • x:显示没有控制终端的进程
    • j:列出与作业控制相关的信息
      在这里插入图片描述
  • STAT(状态) 参数意义:

    • D 不可中断 Uninterruptible ( usually IO )
    • R 正在运行,或在队列中的进程
    • S(大写) 处于休眠状态
    • T 停止或被追踪
    • Z 僵尸进程
    • W 进入内存交换(从内核 2.6 开始无效)
    • X 死掉的进程
    • < 高优先级
    • N 低优先级
    • s 包含子进程
    • + 位于前台的进程组
  • 实时显示进程动态
    top

    可以在使用 top 命令时加上 -d 来指定显示信息更新的时间间隔,在 top 命令执行后,可以按以下按键对显示的结果进行排序:

    • M 根据内存使用量排序

    • P 根据 CPU 占有率排序

    • T 根据进程运行时间长短排序

    • U 根据用户名来筛选进程

    • K 输入指定的 PID 杀死进程

    • 杀死进程
      kill [signal] pid

      kill -l 列出所有信号
      kill -SIGKILL 进程 ID
      kill -9 进程 ID
      killall name 根据进程名杀死进程

(3) 进程号和相关函数

  • 每个进程都由进程号来标识,其类型为 pid_t (非负整型),进程号的范围 0~32767 。进程号总是唯一的,但可以重用。当一个进程终止后,其进程号就可以再次使用。
  • 任何进程(除 init 进程)都是由另一个进程创建,该进程称为被创建进程的父进程,对应的进程号称为父进程号( PPID )。
  • 进程组是一个或多个进程的集合。他们之间相互关联,进程组可以接收同一终端的各种信号,关联的进程有一个进程组号( PGID )。默认情况下,当前的进程号会当做当前的进程组号。
    • 进程号和进程组相关函数:
      pid_t getpid(void);
      pid_t getppid(void);
      pid_t getpgid(pid_t pid);

2.3 进程创建

(1)进程创建

系统允许一个进程创建新进程,新进程即为子进程,子进程还可以创建新的子进程,形成进程树结构模型。
在这里插入图片描述

返回值:

  • 成功:子进程中返回 0 ,父进程中返回子进程 ID
  • 失败:返回 -1

失败的两个主要原因:

  1. 当前系统的进程数已经达到了系统规定的上限,这时 errno 的值被设置为 EAGAIN
  2. 系统内存不足,这时 errno 的值被设置为 ENOMEM
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
/*
pid_t fork(void);
函数的作用:用于创建子进程。返回值:fork()的返回值会返回两次。一次是在父进程中,一次是在子进程中。在父进程中返回创建的子进程的ID,在子进程中返回0如何区分父进程和子进程:通过fork的返回值。在父进程中返回-1,表示创建子进程失败,并且设置errno
*/int main() {int num = 10;// 创建子进程pid_t pid = fork();// 判断是父进程还是子进程if(pid > 0) {printf("pid : %d\n", pid);// 如果大于0,返回的是创建的子进程的进程号,当前是父进程printf("i am parent process, pid : %d, ppid : %d\n", getpid(), getppid());printf("parent num : %d\n", num);num += 10;printf("parent num += 10 : %d\n", num);} else if(pid == 0) {// 当前是子进程printf("i am child process, pid : %d, ppid : %d\n", getpid(),getppid());printf("child num : %d\n", num);num += 100;printf("child num += 100 : %d\n", num);}// for循环for(int i = 0; i < 3; i++) {printf("i : %d , pid : %d\n", i , getpid());sleep(1);}return 0;
}

在这里插入图片描述

(2)父子进程虚拟地址空间

在这里插入图片描述

父子进程之间的关系:
区别

  1. fork() 函数的返回值不同
    父进程中: >0 返的子进程的ID
    子进程中: =0
  2. pcb中的一些数据
    当前的进程的id: pid
    当前的进程的父进程的id:ppid
    信号集

共同点
某些状态下:子进程刚被创建出来,还没有执行任何的写数据的操作

  • 用户区的数据相同
  • 文件描述符表相同

父子进程对变量是不是共享的?

  • 刚开始的时候,是一样的,共享的。如果修改了数据,不共享了。
  • 读时共享(子进程被创建,两个进程没有做任何的写的操作),写时拷贝

在这里插入图片描述

  • 栈空间中的变量相同,但会不干扰。

实际上,更准确来说,Linux 的 fork() 使用是通过写时拷贝 (copy- on-write) 实现。

  • 写时拷贝是一种可以推迟甚至避免拷贝数据的技术。

  • 内核此时并不复制整个进程的地址空间,而是让父子进程共享同一个地址空间

  • 只用在需要写入的时候才会复制地址空间,从而使各个进行拥有各自的地址空间。
    也就是说,资源的复制是在需要写入的时候才会进行,在此之前,只有以只读方式共享

  • 注意:fork之后父子进程共享文件,
    fork产生的子进程与父进程相同的文件文件描述符指向相同的文件表,引用计数增加,共享文件偏移指针。

(3)GDB 多进程调试

  • 使用 GDB 调试的时候, GDB 默认只能跟踪一个进程,可以在 fork 函数调用之前,通过指令设置 GDB 调试工具跟踪父进程或者是跟踪子进程,默认跟踪父进程。
  • 设置调试父进程或者子进程:set follow-fork-mode [parent (默认) | child]
  • 设置调试模式:set detach-on-fork [on (默认) | off]
    • 默认为 on ,表示调试当前进程的时候,其它的进程继续运行,如果为 off ,调试当前进程的时候,其它进程被 GDB 挂起
  • 查看调试的进程:info inferiors
  • 切换当前调试的进程:inferior id
  • 使进程脱离 GDB 调试: detach inferiors id

2.4 exec 函数族

(1)exec 函数族介绍

  • 函数族:功能相同或相似;类似C++ 中的函数重载。

  • exec 函数族 的作用是根据指定的文件名 找到可执行文件,并用它来 取代 调用进程的内容(一般都是先 fork 出一个子进程,取代子进程 ),换句话说,就是在调用进程内部执行一个可执行文件。

  • exec 函数族的函数执行成功后不会返回,因为调用进程的实体,包括 代码段数据段堆栈 等都已经被新的内容取代,只留下进程 ID 等一些表面上的信息仍保持原样,颇有些神似 “三十六计” 中的 “金蝉脱壳” 。看上去还是旧的躯壳,却已经注入了新的灵魂。只有调用失败了,它们才会返回 -1 ,从原程序的调用点接着往下执行。

(2)exec 函数族

// 标准c库中的函数
int execl(const char *path, const char *arg, .../* (char *) NULL */);
int execlp(const char *file, const char *arg, ... /* (char *) NULL */);
int execle(const char *path, const char *arg, .../*, (char *) NULL, char *
const envp[] */);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execvpe(const char *file, char *const argv[], char *const envp[]);// Linux 中的函数
int execve(const char *filename, char *const argv[], char *const envp[]);
  • l (list) 参数地址列表,以空指针结尾
  • v (vector) 存有各参数地址的指针数组的地址
  • p (path) 按 PATH 环境变量指定的目录搜索可执行文件
  • e (environment) 存有环境变量字符串地址的指针数组的地址

int execl(const char *path, const char *arg, ...);

  • 参数

    • path: 需要指定的执行的文件的路径或者名称
      • a.out, /home/nowcoder/a.out 推荐使用绝对路径
    • arg: 是执行可执行文件所需要的参数列表 (./a.out hello world )
      • 第一个参数一般没有什么作用,为了方便,一般写的是执行的程序的名称
      • 从第二个参数开始往后,就是程序执行所需要的的参数列表
      • 参数最后需要以 NULL 结束(哨兵)
  • 返回值

    • 只有当调用失败,才会有返回值,返回 -1,并且设置 errno
    • 如果调用成功,没有返回值。

    例如:首先创建一个 hello.c

    #include <stdio.h>int main() {    printf("hello, world\n");return 0;
    }
    
    #include <unistd.h>
    #include <stdio.h>int main() {// 创建一个子进程,在子进程中执行exec函数族中的函数pid_t pid = fork();if(pid > 0) {// 父进程printf("i am parent process, pid : %d\n",getpid());sleep(1);}else if(pid == 0) {// 子进程execl("hello","hello",NULL);// execl("/bin/ps", "ps", "aux", NULL);perror("execl");printf("i am child process, pid : %d\n", getpid());}for(int i = 0; i < 3; i++) {printf("i = %d, pid = %d\n", i, getpid());}return 0;
    }
    

    在这里插入图片描述

int execlp (const char *file, const char *arg, ...);

  • 会到 环境变量 中查找指定的可执行文件,如果找到了就执行,找不到就执行不成功。

  • 参数

    • file: 需要执行的可执行文件的文件名
      • a.out, ps
    • arg: 是执行可执行文件所需要的参数列表 (./a.out hello world )
      • 第一个参数一般没有什么作用,为了方便,一般写的是执行的程序的名称
      • 从第二个参数开始往后,就是程序执行所需要的的参数列表
      • 参数最后需要以 NULL 结束(哨兵)
  • 返回值

    • 只有当调用失败,才会有返回值,返回 -1,并且设置 errno
    • 如果调用成功,没有返回值。
#include <unistd.h>
#include <stdio.h>int main() {// 创建一个子进程,在子进程中执行exec函数族中的函数pid_t pid = fork();if(pid > 0) {// 父进程printf("i am parent process, pid : %d\n",getpid());sleep(1);}else if(pid == 0) {// 子进程execlp("ps", "ps", "aux", NULL);printf("i am child process, pid : %d\n", getpid());}for(int i = 0; i < 3; i++) {printf("i = %d, pid = %d\n", i, getpid());}return 0;
}

其他的类似:

/*
int execv(const char *path, char *const argv[]);argv是需要的参数的一个字符串数组char * argv[] = {"ps", "aux", NULL};execv("/bin/ps", argv);int execve(const char *filename, char *const argv[], char *const envp[]);char * envp[] = {"/home/nowcoder", "/home/bbb", "/home/aaa"};*/

2.5 进程控制

(1)进程退出

#include <stdlib.h>  // 标准c库,常用
void exit(int status);#include <unistd.h>  // Linux 系统函数
void _exit(int status);

在这里插入图片描述

(2)孤儿进程

  • 父进程运行结束,但子进程还在运行(未运行结束),这样的子进程就称为 孤儿进程 ( Orphan Process )(没爹了)。
  • 每当出现一个孤儿进程的时候,内核就把孤儿进程的 父进程 设置为 init (ppid = 1),而 init 进程会循环地 wait() 它的已经退出的子进程。这样,当一个孤儿进程凄凉地结束了其生命周期的时候, init 进程就会代表 党和政府 出面处理它的一切善后工作。
  • 因此孤儿进程不会有什么危害

(3)僵尸进程

  • 每个进程结束之后 , 都会释放自己地址空间中的 用户区数据内核区PCB 没有办法自己释放掉,需要父进程去释放。
  • 进程终止时,父进程尚未回收,子进程残留资源( PCB )存放于内核中,变成僵尸 ( Zombie )进程。(爹还在
  • 僵尸进程不能被 kill -9 杀死,
  • 这样就会导致一个问题,如果父进程不调用 wait()waitpid() 的话,那么保留的那段信息就不会释放,其进程号就会一直被占用,但是系统所能使用的进程号是有限的,如果大量的产生僵尸进程,将因为没有可用的进程号而导致系统 不能产生新的进程,此即为僵尸进程的危害,应当避免。

(4)进程回收

  • 在每个进程退出的时候,内核释放该进程所有的资源、包括打开的文件、占用的内存 (都是用户区数据) 等。但是仍然为其保留一定的信息,这些信息主要主要指进程控制块 PCB(内核区) 的信息(包括进程号退出状态运行时间等)。

  • 父进程可以通过调用 waitwaitpid 得到它的 退出状态int 类型地址,传出参数) 同时 彻底清除掉这个进程

    在这里插入图片描述

  • wait()waitpid() 函数的功能一样,区别在于, wait() 函数会 阻塞waitpid() 可以设置 不阻塞waitpid() 还可以指定等待哪个子进程结束。

  • 注意:一次 waitwaitpid 调用 只能清理一个子进程,清理多个子进程应使用循环。

调用 wait 函数的进程会被挂起阻塞),直到它的 一个子进程退出 或者 收到一个不能被忽略的信号 时才被唤醒(相当于继续往下执行)

  • 成功:返回被回收的 子进程的id
  • 失败:-1 (所有的子进程都结束,调用函数失败)

如果没有子进程了,函数立刻返回,返回 -1;如果子进程都已经结束了,也会立即返回,返回 -1.

#include <sys/types.h>
#include <sys/wait.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>int main() {// 有一个父进程,创建5个子进程(兄弟)pid_t pid;// 创建5个子进程for(int i = 0; i < 5; i++) {pid = fork();if(pid == 0) { // 如果是子进程,则退出循环,不在产生孙子进程break;}}if(pid > 0) {// 父进程while(1) {printf("parent, pid = %d\n", getpid());// int ret = wait(NULL);int st;int ret = wait(&st); //阻塞if(ret == -1) {break;}if(WIFEXITED(st)) { // w if exited// 是不是正常退出printf("退出的状态码:%d\n", WEXITSTATUS(st));}if(WIFSIGNALED(st)) {// 是不是异常终止printf("被哪个信号干掉了:%d\n", WTERMSIG(st));}printf("child die, pid = %d\n", ret);sleep(1);}} else if (pid == 0){// 子进程while(1) {printf("child, pid = %d\n",getpid());    sleep(1);       }exit(0); // 设置:退出的状态码为 0}return 0; // exit(0)
}

在这里插入图片描述

  • pid_t waitpid(pid_t pid, int *wstatus, int options);

    • 功能:回收 指定进程号子进程,可以设置是否阻塞。

    • 参数

      • pid:
        pid > 0 : 某个子进程pid
        pid = 0 : 回收 当前进程组的所有子进程
        pid = -1 : 回收 所有的子进程,相当于 wait()最常用)(有的子进程可能不在一个组,也要回收)
        pid < -1 : 某个进程组组id 的绝对值,回收 指定进程组 中的 子进程

      • options:设置阻塞或者非阻塞
        0 : 阻塞
        WNOHANG : 非阻塞

      • 返回值 *wstatus

        > 0 : 返回子进程的 id
        = 0 : options=WNOHANG, 表示还有子进程活着
        = -1 :错误,或者没有子进程了

      在这里插入图片描述

      #include <sys/types.h>
      #include <sys/wait.h>
      #include <stdio.h>
      #include <unistd.h>
      #include <stdlib.h>int main() {// 有一个父进程,创建5个子进程(兄弟)pid_t pid;// 创建5个子进程for(int i = 0; i < 5; i++) {pid = fork();if(pid == 0) {break;}}if(pid > 0) {// 父进程while(1) {printf("parent, pid = %d\n", getpid());sleep(1);int st;// int ret = waitpid(-1, &st, 0); // 阻塞,和wait相同int ret = waitpid(-1, &st, WNOHANG);//非阻塞if(ret == -1) {break;} else if(ret == 0) {// 说明还有子进程存在continue;} else if(ret > 0) {if(WIFEXITED(st)) {// 是不是正常退出printf("退出的状态码:%d\n", WEXITSTATUS(st));}if(WIFSIGNALED(st)) {// 是不是异常终止printf("被哪个信号干掉了:%d\n", WTERMSIG(st));}printf("child die, pid = %d\n", ret);}}} else if (pid == 0){// 子进程while(1) {printf("child, pid = %d\n",getpid());    sleep(1);       }exit(0);}return 0; 
      }
      

(4)退出信息相关宏函数

  • WIFEXITED(status) 非 0 ,进程正常退出

  • WEXITSTATUS(status) 如果上宏为真,获取进程退出的状态exit 的参数)

  • WIFSIGNALED(status) 非 0 ,进程异常终止

  • WTERMSIG(status) 如果上宏为真,获取使进程终止的信号编号

  • WIFSTOPPED(status) 非 0 ,进程处于暂停状态

  • WSTOPSIG(status) 如果上宏为真,获取使进程暂停的信号的编号

  • WIFCONTINUED(status) 非 0 ,进程暂停后已经继续运行

注:仅供学习参考,如有不足,欢迎指正!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/738618.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Opencv 插值方法 总结

一、概括 面试的时候问到了一个图&#xff0c;就是如何将一个算子放缩&#xff1f;&#xff1f;我第一反应是resize&#xff08;&#xff09;,但是后来我转念一想&#xff0c;人家问的是插值方式&#xff0c;今天来总结一下 最邻近插值法原理分析及c实现_最临近插值法-CSDN博…

Python与C++的对比——跟老吕学Python编程

Python与C的对比——跟老吕学Python编程 Python与C的对比1.C编译型 vs Python解释型2.执行效率3.开发效率4.跨平台5.可移植性6.内存管理机制7.易学性8.静态类型 vs 动态类型9.面向对象编程概念10.垃圾回收11.应用领域 Python与C的对比表 Python与C的对比 Python和C都是最受欢迎…

数据结构小记【Python/C++版】——散列表篇

一&#xff0c;基础概念 散列表&#xff0c;英文名是hash table&#xff0c;又叫哈希表。 散列表通常使用顺序表来存储集合元素&#xff0c;集合元素以一种很分散的分布方式存储在顺序表中。 散列表是一个键值对(key-item)的组合&#xff0c;由键(key)和元素值(item)组成。键…

解密阿里巴巴面试题:如何设计一个微博?

亲爱的小米科技粉丝们,大家好呀!今天小米带来了一则热门话题——阿里巴巴面试题:如何设计一个微博?别着急,跟着小米一起来揭秘吧! 实现哪些功能? 在设计微博系统时,需要考虑实现哪些功能才能满足用户的需求。除了基本的发布推文、时间线、新闻推送、关注/不允许用户以…

【JavaScript 漫游】【034】AJAX

文章简介 本篇文章为【JavaScript 漫游】专栏的第 034 篇文章&#xff0c;对浏览器模型的 XMLHttpRequest 对象&#xff08;AJAX&#xff09;的知识点进行了总结。 XMLHttpRequest 对象概述 浏览器与服务器之间&#xff0c;采用 HTTP 协议通信。用户在浏览器地址栏键入一个网…

Java项目源码基于springboot的家政服务平台的设计与实现

大家好我是程序员阿存&#xff0c;在java圈的辛苦码农。辛辛苦苦板砖&#xff0c;今天要和大家聊的是一款Java项目源码基于springboot的家政服务平台的设计与实现&#xff0c;项目源码以及部署相关请联系存哥&#xff0c;文末附上联系信息 。 项目源码&#xff1a;Java基于spr…

虚拟机镜像iso下载

MSDN, 我告诉你 - 做一个安静的工具站 (itellyou.cn)

CANalyzer使用_00 概述

计划写一个专题&#xff0c;该专题主要介绍CANalyzer的使用&#xff0c;每次文档计划写一个点&#xff0c;自己不累&#xff0c;别人看着也不累&#xff0c;并且方便拓展。本文作为专题的开篇主要介绍下CANalyzer软件的背景&#xff0c;软件界面等信息。 1 软件介绍 CANalyze…

FastAPI 学习笔记

FastAPI 学习笔记 0. 引言1. 快速开始2. 升级示例代码 0. 引言 在 Python 这个充满活力的生态系统中&#xff0c;FastAPI 应运而生&#xff0c;它是一个现代的、快速的 Web 框架&#xff0c;专注于构建 RESTful API。 无论你是一名有经验的 Python 开发人员&#xff0c;还是一…

HTTP/2、HTTP/3对HTTP/1.1的性能改进和优化

HTTP/1.1 相比 HTTP/1.0 提高了什么性能&#xff1f; 性能上的改进&#xff1a; 使用长连接的方式改善了 HTTP/1.0 短连接造成的性能开销。 支持管道&#xff08;pipeline&#xff09;网络传输&#xff0c;只要第一个请求发出去了&#xff0c;不必等其回来&#xff0c;就可以…

Purple Pi OH鸿蒙开发板7天入门OpenHarmony开源鸿蒙教程【五】

在完成了Purple Pi OH大部分的接口测试之后&#xff0c;紧接着就是一个充满挑战的任务——利用SDK来编译生成我们自己的镜像文件。通过这一过程&#xff0c;不仅能够让你获得一个可在真实硬件上运行的系统镜像&#xff0c;更重要的是&#xff0c;它让你对OpenHarmony系统的构建…

Qt - 信号和槽

目录 一、信号 二、槽 三、信号和槽的使用 (一) 连接信号和槽 (二) 自定义槽 (三) 通过 Qt Creator生成信号槽代码 (四) 自定义信号 四、带参数的信号和槽 五、信号与槽的断开 六、Qt4版本信号与槽的连接 (一) Qt4版本信号与槽连接的优缺点 一、信号 在 Qt 中&…

CubeMX使用教程(5)——定时器PWM输出

本篇我们将利用CubeMX产生频率固定、占空比可调的两路PWM信号输出 例如PA6引脚输出100Hz的PWM&#xff1b;PA7引脚输出500Hz的PWM&#xff0c;双路同时输出 我们还是利用上一章定时器中断的工程进行学习&#xff0c;这样比较方便 首先打开CubeMX对PA6、PA7进行GPIO配置 注&a…

Mixamo动画素材导入UE5的最简单方法

一、Mixamo素材 官网&#xff1a;https://www.mixamo.com/ Mixamo是Adobe公司出品的免费动画库&#xff0c;可商用。软件分为characters(角色&#xff09;、Animations&#xff08;动画)两个部分。 二、辅助工具MIXAMO CONVERTER 官网&#xff1a;https://terribilisstudio…

C#与WPF通用类库

个人集成封装&#xff0c;仓库已公开 NetHelper 集成了一些常用的方法&#xff1b; 如通用的缓存静态操作类、常用的Wpf的ValueConverters、内置的委托类型、通用的反射加载dll操作类、Wpf的ViewModel、Command、Navigation、Messenger、部分常用UserControls(可绑定的Passwo…

通信总线协议之CAN-FD协议详解

文章目录 通信总线之CAN-FD总线协议详解1. CAN-FD 简介1.1 什么是CAN FD1.2 CAN FD的特点 2. CAN-FD总线协议2.1 帧起始2.2 仲裁段2.3 控制段2.4 数据段2.5 CRC段2.6 ACK段2.7 帧结束 3. 如何从传统的CAN升级到CAN FD 通信总线之CAN-FD总线协议详解 1. CAN-FD 简介 1.1 什么是…

selenium高级应用

常见控件应用 复杂的控件操作1.操作Ajax选项2.滑动滑块操作 WebDriver的特殊操作元素class值包含空格property、attribute、text的区别定位动态id 截图功能页面截图页面截图&#xff0c;返回截图的二进制数据页面截图&#xff0c;返回base64的字符串截取指定元素。先定位元素&a…

Redis常见数据类型下

目录 Hash 哈希 常用指令 HSET HGET HEXISTS HDEL HKEYS HVALS HGETALL HMGET 内部编码 Hash类型和关系型数据库 缓存方式对比 List 列表 特点 常用命令 LPUSH LPUSHX RPUSH RPUSHX LRANGE LPOP / RPOP LINDEX LINSERT 阻塞(BLOCK)版…

【Linux】文件缓冲区|理解文件系统

目录 预备知识 观察现象 第一&#xff1a;携带\n&#xff0c;不使用fork()&#xff0c;打印到显示器 第二&#xff1a;携带\n&#xff0c;使用fork()&#xff0c;打印到显示器 第三&#xff1a;携带\n&#xff0c;使用fork()&#xff0c;打印到文件里 第四&#xff1a;不携…

如何选择适合的G口大流量服务器?

G口大流量服务器是指接入互联网的带宽达到1Gbps及以上&#xff0c;并且能够提供大量数据传输服务的服务器。那么如何选择适合的G口大流量服务器&#xff0c;RAK部落小编为您整理发布选择适合的G口大流量服务器需要考虑哪些关键点。 选择适合的G口大流量服务器时&#xff0c;应该…