【C++干货基地】面向对象核心概念与实践原理:拷贝构造函数的全面解读


在这里插入图片描述

🎬 鸽芷咕:个人主页

 🔥 个人专栏: 《C++干货基地》《粉丝福利》

⛺️生活的理想,就是为了理想的生活!

引入

  哈喽各位铁汁们好啊,我是博主鸽芷咕《C++干货基地》是由我的襄阳家乡零食基地有感而发,不知道各位的城市有没有这种实惠又全面的零食基地呢?C++ 本身作为一门篇底层的一种语言,世面的免费课程大多都没有教明白。所以本篇专栏的内容全是干货让大家从底层了解C++,把更多的知识由抽象到简单通俗易懂。

⛳️ 推荐

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。

文章目录

  • 引入
  • ⛳️ 推荐
  • 一、拷贝构造函数的引入
    • 1.1 拷贝构造的概念
  • 二、拷贝构造函数的特征
    • 2.1 拷贝构造的书写形式
    • 2.2 不显示定义自动创建
    • 2.3 浅拷贝与深拷贝
    • 2.4 不申请资源不需要显示定义
  • 三、拷贝构造函数调用场景
    • 3.1 使用已存在对象创建新对象
    • 3.2 函数参数类型为类类型对象
    • 3.3 函数返回值类型为类类型对象
  • 📝文章结语:

一、拷贝构造函数的引入

我们都知道面向对象的对象是一个宏观的概念, 万事万物都可以当成一个对象。而现实中我们的对象是可以复制的,那么我们在编程中创建的对象如何进行复制呢?

在这里插入图片描述

1.1 拷贝构造的概念

在C++中祖师爷规定了:当我们想把一个对象赋值给另一个对象的时候

  • 或者创建一个与已存在对象一某一样的新对象
  • 时需要调用它的拷贝函数来进行复制

在这里插入图片描述
如图所见拷贝构造函数是我们的六大成员默认函数之一,构造函数的作用是初始化,析构函数是复制清理工作,而我们的构造拷贝函数是用来同类对象进行赋值给另一个对象时的工作:

二、拷贝构造函数的特征

2.1 拷贝构造的书写形式

讲了怎么长时间拷贝构造是干什么的,下面就来到拷贝构造的创建把:
其实构造的前几个特征是需要先了解才能去书写的所以博主这里把他都给整合到前面了,后面的其他特征单独介绍:

  • 拷贝构造函数是构造函数的一个重载形式
  • 拷贝构造函数的参数只有一个且必须是类类型对象的引用,使用传值方式编译器直接报错,
    因为会引发无穷递归调用。

这里第二个特征就特别强调了,我们在书写拷贝构造函数的时候一定要使用传引用

  • 是因为如果我们传值当形参的话那么形参是实参的一份临时拷贝又会拷贝构造函数
  • 这样就会无限递归下去

🍸 代码演示:

class Date
{
public:Date(int year = 1900, int month = 1, int day = 1){_year = year;_month = month;_day = day;}// Date(const Date d)    // 错误写法:编译报错,会引发无穷递归Date(const Date& d)    // 正确写法{_year = d._year;_month = d._month;_day = d._day;}
private:int _year;int _month;int _day;
};
int main()
{Date d1;Date d2(d1);return 0;
}

在这里插入图片描述

  • 所以我们在书写构造函数的时候一定要使用传引用当做形参

2.2 不显示定义自动创建

构造拷贝函数既然是六个默认成员函数之一的话,那么肯定也是符合默认成员函数的特点如果我们没有显示定义的话自动生成:

  • 那么自动生成的拷贝构造函数帮我们完成了什么事情呢?

🍸 代码演示:
在这里插入图片描述

这里我们就可以看到就算我们不写默认成员函数那么编译器也会自动生成 默认拷贝构造函数
去拷贝和赋值,这是可能就有人要问了既然默认生成的 拷贝构造函数 可以完成复制那么为什么要我们手动创建呢?

🔥 这是因为默认生成的拷贝构造函数完成的只是浅拷贝,只是把值复制过去了

2.3 浅拷贝与深拷贝

说到浅拷贝和深拷贝很多铁汁们不太明白,什么是浅拷贝?深拷贝拷贝了那些内容?

  • 下面我们就来看一下这段代码

🍸 代码演示:

#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
#include<stdlib.h>
using namespace std;class Stack
{
public:Stack(size_t capacity = 10){_array = (int*)malloc(capacity * sizeof(int));if (nullptr == _array){perror("malloc申请空间失败");return;}_size = 0;_capacity = capacity;}void Push(const int& data){// CheckCapacity();_array[_size] = data;_size++;}~Stack(){if (_array){free(_array);_array = nullptr;_capacity = 0;_size = 0;}}
private:int* _array;size_t _size;size_t _capacity;
};
int main()
{Stack s1;s1.Push(1);s1.Push(2);s1.Push(3);s1.Push(4);Stack s2(s1);return 0;
}

在这里插入图片描述
这里就是我们说的浅拷贝了,为什么程序回出现崩溃呢?这里刚开始创建了一个S1 对象,又创建了一个S2 对象去进行调用拷贝构造函数进行拷贝:

  • 而这里只进行了浅拷贝,在 S2 进行拷贝构造的时候只是简单的把值复制过去了
  • 所以 S2 和 S1 是指向同一块空间并没有给 S2 去单独开辟一个一模一样的空间

这里就是我们说的浅拷贝,S2 和 S1 指向用一块空间而当程序结束的时候 S2 调用它的析构函数去吧 S1 所指向的空间给释放了, 那么当 S1 在释放的时候就重复释放了原来释放的空间导致程序崩溃。

在这里插入图片描述

🔥 所以在这些去动态申请资源的函数的类去,一定要显示定义拷贝构造函数进行深拷贝

  • 把空间大小和值(内容)完全拷贝进去
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
#include<stdlib.h>
using namespace std;class Stack
{
public:Stack(size_t capacity = 10){_array = (int*)malloc(capacity * sizeof(int));if (nullptr == _array){perror("malloc申请空间失败");return;}_size = 0;_capacity = capacity;}Stack(const Stack& p1){int* tmp = (int*)malloc(sizeof(int) * p1._capacity);if (tmp == nullptr){perror("file malloc");exit(-1);			}memcpy(tmp, p1._array, sizeof(int) * p1._size);_array = tmp;_capacity = p1._capacity;_size = p1._size;}void Push(const int& data){// CheckCapacity();_array[_size] = data;_size++;}~Stack(){if (_array){free(_array);_array = nullptr;_capacity = 0;_size = 0;}}
private:int* _array;size_t _size;size_t _capacity;
};
int main()
{Stack s1;s1.Push(1);s1.Push(2);s1.Push(3);s1.Push(4);Stack s2(s1);return 0;
}

2.4 不申请资源不需要显示定义

如果我们一个类里面并不会去申请资源那么它的默认生成的拷贝构造函数 ,也就够用了。默认生成的拷贝构造函数只会进行值拷贝而我们在不申请资源的话,值拷贝就是我们需要的功能。

  • 🔥 注:类中如果没有涉及资源申请时,拷贝构造函数是否写都可以;一旦涉及到资源申请
    时,则拷贝构造函数是一定要写的,否则就是浅拷贝。

三、拷贝构造函数调用场景

到了这里我相信大家一定对靠北构造函数有一定认知了那么大家知道拷贝函数在哪些场景会自动调用呢?

3.1 使用已存在对象创建新对象

这个就是最常见的场景了,使用已存在的对象去创建新对象。

🍸 代码演示:

class Date
{
public:Date(int year, int minute, int day){cout << "Date(int,int,int):" << this << endl;}Date(const Date& d){cout << "Date(const Date& d):" << this << endl;}~Date(){cout << "~Date():" << this << endl;}
private:int _year;int _month;int _day;
};int main()
{Date d1(2022,1,13);Test(d1);return 0;
}

3.2 函数参数类型为类类型对象

在以前学习函数的时候我们知道,形参是实参的一份临时拷贝所以当函数参数类型为 类 的类型对象的话也会自动调用 拷贝构造函数

🍸 代码演示:

Date Test(Date d)
{Date temp(d);return temp;
}

3.3 函数返回值类型为类类型对象

函数的返回值返回给我们调用的对象时候,返回的是 temp 的一份临时拷贝并不是对象本身

🍸 代码演示:

Date Test(Date d)
{Date temp(d);return temp;
}

📝文章结语:

☁️ 看到这里了还不给博主扣个:
⛳️ 点赞🍹收藏 ⭐️ 关注
💛 💙 💜 ❤️ 💚💓 💗 💕 💞 💘 💖
拜托拜托这个真的很重要!
你们的点赞就是博主更新最大的动力!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/738566.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

游戏行业需要堡垒机吗?用哪款堡垒机好?

相信大家对于游戏都不陌生&#xff0c;上到老&#xff0c;下到小&#xff0c;越来越多的小伙伴开始玩游戏。随着游戏用户的增加&#xff0c;如何保障用户资料安全&#xff0c;如何确保游戏公司数据安全等是一个不容忽视的问题。因此不少人在问&#xff0c;游戏行业需要堡垒机吗…

系统设计 - SDK设计流程

▌从 0 到 1 开发 一般从 0 设计一款 SDK&#xff0c;总体上可以分为 5 个步骤&#xff1a;基础架构的设计、开放 API 接口设计、业务功能框架设计与开发、基础核心库设计与开发、打包与发布。 1. 第一步是基础架构设计&#xff0c;一个好的架构可主要从可读性、可扩展性、可维…

css3实现3D立方体旋转特效源码

源码介绍 CSS3自动旋转正方体3D特效是一款基于css3 keyframes属性制作的图片相册自动旋转立方体特效 效果展示 下载地址 css3实现3D立方体旋转特效代码

PCL点云处理之四点确定球心和半径(克拉默法则C++) (二百二十九)

PCL点云处理之四点确定球心和半径(克拉默法则C++) (二百二十九) 一、算法介绍二、算法实现1.代码2.结果一、算法介绍 相比于计算点坐标均值作为球心和某点到均值距离作为半径的快速计算法,这里介绍的方法更加适合精度要求较高的四点定球计算,下面是具体的实现代码,C++编…

搭建mysql主从复制(主主复制)

1&#xff1a;设主库允许远程连接(注意&#xff1a;设置账号密码必须使用的插件是mysql_native_password&#xff0c;其他的会连接失败) #切换到mysql这个数据库&#xff0c;修改user表中的host&#xff0c;使其可以实现远程连接 mysql>use mysql; mysql>update user se…

蓝牙系列十三:协议栈L2CAP层

L2CAP 全称为逻辑链路控制与适配协议(Logical Link Control and Adaptation Protocol)&#xff0c;位于基带层之上&#xff0c;将基带层的数据分组交换为便于高层应用的数据分组格式&#xff0c;并提供协议复用和服务质量交换等功能。 该层属于主机的内容&#xff0c;位于HCI层…

手写Mybatis自动填充插件

目录 一、Mybatis插件简介&#x1f959;二、工程创建及前期准备工作&#x1f96b;实现代码配置文件 三、插件核心代码实现&#x1f357;四、测试&#x1f953; 一、Mybatis插件简介&#x1f959; Mybatis插件运行原理及自定义插件_简述mybatis的插件运行原理,以及如何编写一个…

HTML 语义化:构建优质网页的关键

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

深度学习与强化学习的绝妙融合:引领未来智能科技新潮流!

深度学习在强化学习中的应用已经取得了显著的成果&#xff0c;特别是在处理复杂环境和大规模数据方面。 一、概述 强化学习是一种独特的机器学习范式&#xff0c;其核心在于通过代理与环境的交互来学习最优行为策略。这种学习方式是试错性的&#xff0c;代理在不断地尝试、接…

【JavaScript】面试手撕深拷贝

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 深拷贝的作用深浅拷贝的区别浅拷贝深拷贝 深拷贝实现方式JSON.parse(JSON.stringi…

微信小程序云开发教程——墨刀原型工具入门(素材面板)

引言 作为一个小白&#xff0c;小北要怎么在短时间内快速学会微信小程序原型设计&#xff1f; “时间紧&#xff0c;任务重”&#xff0c;这意味着学习时必须把握微信小程序原型设计中的重点、难点&#xff0c;而非面面俱到。 要在短时间内理解、掌握一个工具的使用&#xf…

在云端构建和部署工作负载的最佳方式是怎样的?

如果要问当今企业希望从云计算中获得什么&#xff0c;那么 “低延迟” 以及 “更接近客户” 可能会是很多企业的首要目标。低延迟可以带来诸多好处&#xff0c;如提升用户满意度、增加竞争优势、降低运营成本等&#xff1b;更接近客户则有助于降低网络拥塞、减少数据丢失、符合…

Java设计模式:外观模式

❤ 作者主页&#xff1a;欢迎来到我的技术博客&#x1f60e; ❀ 个人介绍&#xff1a;大家好&#xff0c;本人热衷于Java后端开发&#xff0c;欢迎来交流学习哦&#xff01;(&#xffe3;▽&#xffe3;)~* &#x1f34a; 如果文章对您有帮助&#xff0c;记得关注、点赞、收藏、…

ArcGIS学习(十四)OD分析

ArcGIS学习(十四)OD分析 1.上海市KFC与麦当劳的空间聚集度分析 本任务给大家带来的内容是网络节点关系分析。网络节点关系分析一般也叫OD分析。“O”指的是起点(ORIGIN),"D”指的是终点(DESTINATION),0D分析即为基于起点到终点的分析。 网络节点关系分析我们经常…

基于springboot的厨艺交流平台

采用技术 基于springboot的厨艺交流平台的设计与实现~ 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBootMyBatis 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 页面展示 食材分类管理 用户信息管理 菜谱分类管理 菜谱信息管理 食材信息…

Swarm集群负载均衡的实现方式

目录 1. 背景2. 参考3. 环境4. 概念5. Swarm 网络5.1 Swarm 网络连接情况5.2 外部访问数据包转发流程 6 Swarm集群服务信息7 Swarm集群数据包转发流程7.1 Client发送请求至集群节点9090端口7.1.1 集群节点宿主机Netfilter规则7.1.2 Tcpdump抓包验证结果 7.2 Ingress_sbox下IPVS…

【漏洞复现】网康NS-ASG应用安全网关 index.php SQL注入漏洞(CVE-2024-2330)

0x01 产品简介 网康科技的NS-ASG应用安全网关是一款软硬件一体化的产品&#xff0c;集成了SSL和 IPSecQ&#xff0c;旨在保障业务访问的安全性&#xff0c;适配所有移动终端&#xff0c;提供多种链路均衡和选择技术&#xff0c;支持多种认证方式灵活组合&#xff0c;以及内置短…

Hadoop学习3:问题解决

文章目录 问题解决1. ERROR: but there is no HDFS_NAMENODE_USER defined2. JAVA_HOME is not set and could not be found.3. Hadoop-DFS页面访问不了4. namenode格式化失败&#xff0c;或者dfs页面打开失败5. ERROR: but there is no YARN_RESOURCEMANAGER_USER defined. Ab…

《ElementPlus 与 ElementUI 差异集合》el-input 和 el-button 属性 size 有变化

差异 element-ui el-input 和 el-button 中&#xff0c;属性size 值是 medium / small / minielement-plus el-input 和 el-button 中&#xff0c;属性size 值是 ‘large’ | ‘default’ | ‘small’&#xff1b; 如果你是自动升级&#xff0c;Vue3 系统会有如下警告“ el-b…

机器学习模型—支持向量机 (SVM)

机器学习模型—支持向量机 (SVM) 支持向量机 (SVM) 是一种强大的机器学习算法,用于线性或非线性分类、回归,甚至异常值检测任务。SVM 可用于各种任务,例如文本分类、图像分类、垃圾邮件检测、笔迹识别、基因表达分析、人脸检测和异常检测。SVM 在各种应用中具有适应性和高效…