21 卷积层里的多输入多输出通道【李沐动手学深度学习v2课程笔记】

目录

1. 多输入输出通道&相应代码实现

1.1 多输入

1.2 多输出

1.3 1x1 卷积层

1.4 小结


1. 多输入输出通道&相应代码实现

1.1 多输入

为了加深理解,我们实现一下多输入通道互相关运算。 简而言之,我们所做的就是对每个通道执行互相关操作,然后将结果相加。

import torch
from d2l import torch as d2ldef corr2d_multi_in(X, K):# 先遍历“X”和“K”的第0个维度(通道维度),再把它们加在一起return sum(d2l.corr2d(x, k) for x, k in zip(X, K))

我们可以构造与 图6.4.1中的值相对应的输入张量X和核张量K,以验证互相关运算的输出。

X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])corr2d_multi_in(X, K)

输出:

tensor([[ 56.,  72.],[104., 120.]])

1.2 多输出

 

在互相关运算中,每个输出通道先获取所有输入通道,再以对应该输出通道的卷积核计算出结果。

如下所示,我们实现一个计算多个通道的输出的互相关函数。

def corr2d_multi_in_out(X, K):# 迭代“K”的第0个维度,每次都对输入“X”执行互相关运算。# 最后将所有结果都叠加在一起return torch.stack([corr2d_multi_in(X, k) for k in K], 0)

通过将核张量KK+1K中每个元素加1)和K+2连接起来,构造了一个具有3个输出通道的卷积核。

K = torch.stack((K, K + 1, K + 2), 0)
K.shape

输出:

torch.Size([3, 2, 2, 2])

下面,我们对输入张量X与卷积核张量K执行互相关运算。现在的输出包含3个通道,第一个通道的结果与先前输入张量X和多输入单输出通道的结果一致。

corr2d_multi_in_out(X, K)
tensor([[[ 56.,  72.],[104., 120.]],[[ 76., 100.],[148., 172.]],[[ 96., 128.],[192., 224.]]])

1.3 1x1 卷积层

1×1卷积,即�ℎ=��=1,看起来似乎没有多大意义。 毕竟,卷积的本质是有效提取相邻像素间的相关特征,而1×1卷积显然没有此作用。 尽管如此,1×1仍然十分流行,经常包含在复杂深层网络的设计中。下面,让我们详细地解读一下它的实际作用。

因为使用了最小窗口,1×1卷积失去了卷积层的特有能力——在高度和宽度维度上,识别相邻元素间相互作用的能力。 其实1×1卷积的唯一计算发生在通道上。

下面,我们使用全连接层实现1×1卷积。 请注意,我们需要对输入和输出的数据形状进行调整。

def corr2d_multi_in_out_1x1(X, K):c_i, h, w = X.shapec_o = K.shape[0]X = X.reshape((c_i, h * w))K = K.reshape((c_o, c_i))# 全连接层中的矩阵乘法Y = torch.matmul(K, X)return Y.reshape((c_o, h, w))

当执行1×1卷积运算时,上述函数相当于先前实现的互相关函数corr2d_multi_in_out。让我们用一些样本数据来验证这一点。

X = torch.normal(0, 1, (3, 3, 3))
K = torch.normal(0, 1, (2, 3, 1, 1))Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(torch.abs(Y1 - Y2).sum()) < 1e-6

1.4 小结

  • 多输入多输出通道可以用来扩展卷积层的模型。

  • 当以每像素为基础应用时,1×1卷积层相当于全连接层。

  • 1×1卷积层通常用于调整网络层的通道数量和控制模型复杂性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/735732.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CentOS 8启动流程

一、BIOS与UEFI BIOS Basic Input Output System的缩写&#xff0c;翻译过来就是“基本输入输出系统”&#xff0c;是一种业界标准的固件接口&#xff0c;第一次出现在1975年&#xff0c;是计算机启动时加载的第一个程序&#xff0c;主要功能是检测和设置计算机硬件&#xff…

题目:泡澡(蓝桥OJ 3898)

问题描述&#xff1a; 解题思路&#xff1a; 图解&#xff1a;&#xff08;以题目样例为例子&#xff09; 注意点&#xff1a;题目的W是每分钟最大出水量&#xff0c;因此有一分钟的用水量大于出水量则不通过。 补充&#xff1a;差分一般用于对一段区间每个元素加相同值&#x…

JZ76 删除链表中重复的结点

/*public class ListNode {int val;ListNode next null;ListNode(int val) {this.val val;} } */import java.util.*; public class Solution {public ListNode deleteDuplication(ListNode pHead) {//初步想想法&#xff1a; 弄一个hashmap 然后进行key存储起来。然后 如果存…

hibernate查询时会无限循环,然后报错:Exception in thread “main“ java.lang.StackOverflowError

遇到的情况有&#xff1a; 1、建表对应的时候“意外”添加了索引。解决&#xff1a;需要把索引删掉 2、打印查询到的单个实体信息时&#xff0c;使用了toString()方法。解决&#xff1a;不用就行了 3、多对多映射&#xff0c;查询到的整个实体集合时&#xff0c;直接打印这个…

web前端框架

目前比较火热的几门框架: React React是由Facebook(脸书)开发和创建的开源框架。React 用于开发丰富的用户界面&#xff0c;特别是当您需要构建单页应用程序时。它是最强大的前端框架。 弊端: 您不具备 JavaScript 的实践知识&#xff0c;则建议不要使用 React。同样&#x…

2024 年广东省职业院校技能大赛(高职组) “云计算应用”赛项样题①

2024 年广东省职业院校技能大赛&#xff08;高职组&#xff09; “云计算应用”赛项样题① 模块一 私有云&#xff08;50 分&#xff09;任务 1 私有云服务搭建&#xff08;10 分&#xff09;任务 2 私有云服务运维&#xff08;25 分&#xff09;任务 3 私有云运维开发&#xf…

人工智能(AI)领域最流行的八大算法概括

人工智能&#xff08;AI&#xff09;领域最流行的八大算法概括&#xff01; 1. 卷积神经网络&#xff08;CNN&#xff0c;Convolutional Neural Network&#xff09; 2. 图神经网络&#xff08;GNN&#xff0c;Graph Neural Network&#xff09; 3. 循环神经网络&#xff08;RN…

蓝桥杯第一天

这题就是典型的位数贡献大于数量贡献&#xff0c; 1花的火柴更少&#xff0c;所以尽量用完10个1&#xff0c;然后其实就是简单的背包问题尽量拿最多的物品&#xff08;数字&#xff09;&#xff0c;限重为300&#xff0c;各物品&#xff08;数字&#xff09;的重量即为所需火柴…

Python语言元素之变量

程序是指令的集合&#xff0c;写程序就是用指令控制计算机做我们想让它做的事情。那么&#xff0c;为什么要用Python语言来写程序呢&#xff1f;因为Python语言简单优雅&#xff0c;相比C、C、Java这样的编程语言&#xff0c;Python对初学者更加友好。 一、一些计算机常识 在…

储能系统--户用储能欧洲市场(三)

五、户用市场地域分析 2022年以来&#xff0c;全球能源供需格局进入调整阶段&#xff0c;越来越多的国家将储能列为加速其清洁能源转型的必选项。根据中关村储能产业技术联盟 &#xff08;CNESA&#xff09;数据&#xff0c;2022年全球新增投运电力储能项目装机规模30.7GW&…

吴恩达机器学习笔记十六 如何debug一个学习算法 模型评估 模型选择和训练 交叉验证测试集

如果算法预测出的结果不太好&#xff0c;可以考虑以下几个方面&#xff1a; 获得更多的训练样本 采用更少的特征 尝试获取更多的特征 增加多项式特征 增大或减小 λ 模型评估(evaluate model) 例如房价预测&#xff0c;用五个数据训练出的模型能很好的拟合这几个数据&am…

贪吃蛇(C语言实现)

贪食蛇&#xff08;也叫贪吃蛇&#xff09;是一款经典的小游戏。 —————————————————————— 本博客实现使用C语言在Windows环境的控制台中模拟实现贪吃蛇小游戏。 实行的基本功能&#xff1a; • 贪吃蛇地图的绘制 • 蛇吃食物的功能&#xff08;上、…

详解DNS服务

华子目录 概述产生原因作用连接方式 因特网的域名结构拓扑分类域名服务器类型划分 DNS域名解析过程分类解析图图过程分析注意 搭建DNS域名解析服务器概述安装软件bind服务中的三个关键文件 配置文件分析主配置文件共4部分组成区域配置文件作用区域配置文件示例分析正向解析反向…

SpringCloud 微服务架构编码构建

一、前言 接下来是开展一系列的 SpringCloud 的学习之旅&#xff0c;从传统的模块之间调用&#xff0c;一步步的升级为 SpringCloud 模块之间的调用&#xff0c;此篇文章为第一篇&#xff0c;即不使用 SpringCloud 组件进行模块之间的调用&#xff0c;后续会有很多的文章循序渐…

️ IP代理实操指南:如何在爬虫项目中避免封禁和限制 ️‍♂️

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

企业战略管理 找准定位 方向 使命 边界 要干什么事 要做多大的生意 资源配置投入

AI突破千行百业&#xff0c;也难打破护城河 作为每个企业或个人的立命生存之本&#xff0c;有的企业在某个领域长期努力筑起了高高的护城河。 战略是什么&#xff1f;用处&#xff0c;具体内容 企业战略是指企业为了实现长期目标&#xff0c;制定的总体规划和长远发展方向。…

通过Forms+Automate+Lists+审批,实现用车申请流程

因为Sham公司目前用的用车申请流程是使用的K2系统&#xff0c;用户申请后&#xff0c;我们还需要单独另行输入Excel来汇总申请记录&#xff0c;当然K2也能导出&#xff0c;但是需要每次导出也是很麻烦的&#xff0c;而且不灵活。 刚好最近发现Forms与Automate能联通&#xff0…

Java服务器-Disruptor使用注意

最近看了一下部署后台的服务器状况&#xff0c;发现我的一个Java程序其占用的CPU时长超过100%&#xff0c;排查后发现竟是Disruptor引起的&#xff0c;让我们来看看究竟为什么Disruptor会有这样的表现。 发现占用CPU时间超过100%的进程 首先是在服务器上用top命令查看服务器状…

超越基础:提升你的数据采集策略与IP代理的高级应用

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

【AI辅助研发】-趋势:大势已来,行业变革

【AI辅助研发】-趋势&#xff1a;大势已来&#xff0c;行业变革 引言 在科技日新月异的今天&#xff0c;人工智能&#xff08;AI&#xff09;技术已逐渐渗透到各行各业&#xff0c;其中软件研发行业更是受益匪浅。AI辅助研发已成为大势所趋&#xff0c;不仅提高了软件开发的效…