FPGA的配置状态字寄存器Status Register

目录

简介

状态字定义      

Unknown Device/Many Unknow Devices

解决办法

一般原因


简介

 Xilinx的FPGA有多种配置接口,如SPI,BPI,SeletMAP,Serial,JTAG等;如果从时钟发送者的角度分,还可以分为主动Master(即由FPGA自己发送配置时钟信号CCLK)和被动Slave(即由外部器件提供配置所需要的时钟信号);另外还可由板上稳定晶振提供时钟信号,经由FPGA的EMCCLK接口,再从CCLK端口送出。

        如此多的配置形式,一旦发生配置失败怎么办?大家都知道先要查看一下板子上FPGA的DONE管脚。但绝大多数情况下,DONE管脚此时会是低电平,只能证明配置确实失败了。但是失败的原因到底是什么呢?调试到底应该如何入手呢?

        FPGA的状态字寄存器Status Register能直接告诉你或者极大地辅助判断失败的原因,Xilinx FPGA的状态字,在赛灵思所有器件系列中都基本保持一致的定义(个别位由于系列特性不同可能有细微区别,这些不是最重要的,不在我们今天讨论的范围内)。

状态字定义      

 以7系列 FPGA为例,我们看看UG470上对状态字的完整定义:

         首先,用下载线连接好板子和电脑,板子上好电。打开Vivado硬件管理器,扫描板子上的JTAG链 (Open target -AutoConnect), 板子上的JTAG链中的器件会显示在Hardware窗口中:


        鼠标选中扫描出的FPGA器件,在下方的Hardware Device Properties窗口中,选择Properties项,会出现该FPGA的一系列属性。找到其中的REGISTER分类,展开,第二个寄存器CONFIG_STATUS, 即是我们要讨论的状态字了。

       这里可以看到的是一个配置前的状态字的标准状态:

      只有BIT02 PLL_LOCK, BIT03 DCI_MATCH, BIT11 INIT_B_INTERNAL, BIT12 INIT_B_PIN的值必须是1;

      BIT08-10 MODE PINS,BIT21 SECURITY_STATUS, BIT25-26 BUS_WIDTH,BIT28 PUDC_B根据FPGA和板子具体的设定,可以为1或者0,其他都必须是0。

      如果一上电,状态字就表现出了非典型值,那么大概率硬件上就有错误或者不合理的地方了。比较典型的几个例子:

1. 状态字全0

REGISTER.CONFIG_STATUS 00000000000000000000000000000000

       这种情况,说明FPGA被强行控制在全局复位状态了。一般是硬件上PROGRAM_B管脚,或者INIT_B管脚被错误的拉到了地上,两个管脚上的有效电平为0.

非常偶尔的情况下,当DONE管脚被错误拉为0电平时也能出现此种状态字。

2. 状态字全1,或者一串1后面跟着一个到数个0(一般不超过4个)

REGISTER.CONFIG_STATUS 11111111111111111111111111111111

REGISTER.CONFIG_STATUS 11111111111111111111111111111110

REGISTER.CONFIG_STATUS 11111111111111111111111111111100

        这种一般是板子上设计的JTAG链里面不只一个FPGA器件,比如是Xilinx的FPGA和一个第三方的CPLD串联等。

        由于Vivado里面并没有第三方器件的BSDL文件,那么在扫描整个JTAG链时,它无法识别链中各器件的型号以及数目,所以往往从TDO管脚中移位出一串1来。如果Xilinx的FPGA位于链的末端(接近TDO的位置),那么有时可以识别出正确的FPGA型号。但是这种情况仍然无法正确进行将要进行的配置操作。另外很多例子中则是FPGA的型号也被识别错误了。

解决方案如下:

https://www.xilinx.com/support/answers/61312.html

Unknown Device/Many Unknow Devices

        此时,不要说状态字无法检测了,整个JTAG已经无法正确扫描,Vivado里面无法识别出任何器件。这一般是板子上的JTAG接口的TDO或者链中最后一个器件的输出管脚TDO,被短接到了地平面上。

        除了上述典型情况,当然还有很多一上电就无法继续配置的情况,原因不胜枚举。这种情况下请详细描述你的JTAG链构成,读出当前的状体字(如何还能够读的话),如果状态字正常,可以接下来进行配置操作。或者是在你的配置失败后,保留失败现场再连接好板子和电脑继续读出状态字。

       如果你的板子已经重新上下电了,那么当时失败的场景也就消失了。这也就是我们一再强调失败后要保留现场,板子上要保留JTAG接口的原因。当然在设计成熟后,或者实验室调试工作结束后,可以去掉JTAG接口以期得到产品更高的安全性。

配置完成后,得到的状态字如下:

REGISTER.CONFIG_STATUS 00010010100100000111110111111100


注意其中的:

BIT02 PLL_LOCK, BIT03 DCI_MATCH, 绝大多数情况已经变为1;

BIT04 EOS,BIT05 GTS, BIT06 GWE, BIT07 GHITH,以及BIT11 INIT_BINTERNAL, BIT12 INIT_B_PIN,BIT13 DONE_INTERNAL, BIT14 DONE_PIN必然是1;

BIT18-20 STARTUP_STATTE应该是100;

BIT25-26 BUS_WIDTH应该是检测出了正确的配置位宽,或者在serial的情况下,保持默认的01值;

其他BIT01 DECRYPTOR, BIT09-10 MODE_PINS, BIT21-23 SECURITY_STATUS, BIT28 PUDC_B, BIT30CFGBVS_PIN, 根据你的使用,有可能是其他的0或者1组合。

RESERVED的不用管。

如果不是这种结果,那么就要看看出什么问题了。

在一些相对简单,典型的情况下,只看某一位就可以直接得到想要的答案。

BIT00的CRC error为1

在不是状态字全1的情况下CRC error位为1,说明配置出现了CRC错误。这是一种很常见,但比较难修复的错误,因为CRC错误的原因一般是因为板子上的信号质量(SI, Signal Integrity)不行,传输数据的过程中0/1电平判决错误,导致配置数据写入失败。

如何确定真的是SI问题呢?看失败概率。CRC错误一般是随机出错的,并不一定100%失败(除非板子的信号差得没法用了,这个一般不会)。那么配置文件中01翻转的次数越少,出错的概率越小。你可以生成一个只点亮板上一盏LED的小测试设计,此时bit文件中有效数据(1)非常少,试着下载该bit看看,是不是配置失败率降低了?如果是,那么基本可以确定了。

解决办法

一旦出现这种情况,可以尝试的办法有:

1. 降低CCLK频率

2. 在CCLK的输入端(以及输出端),加入合适的端接电路

3. 换用更高质量的配置时钟(比如使用质量较好的晶振通过EMCCLK提供时钟)

4. 改善数据链路的信号质量,如果对待CCLK,同样在数据通路上加入合适的端接匹配电路。

总而言之,要做的就是改善板上的信号质量。如果板子SI实在太差,那只有改板,或者尝试下其他配置方式了。

其他位都正常,BIT13 DONE_INTERNAL也为1了,但是BIT14 DONE_PIN为0,FPGA不工作!

       这种情况,其实配置数据已经完整、正确的送入FPGA并且被接收了,但是FPGA的DONE管脚连接不正确,导致DONE没有或者没有在规定时间内上拉到要求的电平,从而导致FPGA最终的启动失败。

       Xilinx的FPGA,一般要求DONE管脚上外加一个上拉电阻(330欧, 4.7K欧等,不同系列要求不同,请参照对应的Configuration User Guide)。如果这个上拉电阻没有加,或者加的阻值过大或过小,那么DONE管脚无法在规定的时间里面达到高电平,此时内部配置控制器会认为配置失败了,典型情况就是DONE internal为高(内部数据接收完毕,内部释放了),但是DONE外部管脚为低。

       此时需要做的,就是检查PCB上DONE部分的设计,看看是不是有和其他管脚相连的情况,被其他管脚强行拉低了。或者是设计的DONE点亮LED灯电路不合理, LED通电后把DONE管脚的电平降为低电平。

        如果你不清楚如何设计这部分电路,从 www.xilinx.com 上,找到一款和你使用的FPGA型号相同或者同系列的开发板,参考它的原理图设计。

BIT29 BAD PACKET error

       Bit29为1,大概率也是CRC错误。这不过这个CRC错误比较特殊,出错位跑到了配置文件里面的命令上,导致配置命令变成了一个无效无意义的指令。此时状态字会报出bad packet error。

       和CRC错误的随机性一样,多次重复加载过程,大概率出错的数据位下次落到其他的数据上。由于配置数据的数量远远大于配置命令,那么很有可能下次出错看到的是BIT00 CRC ERROR为1.

       如果每次都是BAD PACKET error,更要怀疑使用的配置文件已经损坏。比如进行了非法改写。Xilinx的任何配置文件,都是禁止手工修改的。

BIT15 IDCODE Error为1

        配置文件下载时,都要先经过FPGA的IDCODE校验。如果这一步通不过,那么后续的配置不会进行。这种情况下,看看配置文件的bit/bin/mcs是不是给错了。或者FPGA器件有silicon revision的变化。举个例子,有的系列ES芯片和Production芯片的配置文件是不能兼容的。这种错误情况,如果是用JTAG通过Vivado下载,那么log里面也会有相应的提示。

BIT13 DONE_INTERNAL+ BIT14 DONE_PIN均为0

       这也是一种较常见的错误。此时要重点检查一下BIT07 GHIGH位,看看它是不是1。如果是,那么大概率是,你的CCLK时钟给的不够多。FPGA在接收完所有的配置数据后,还需要一定数量的CCLK时钟去完成内部的初始化。如果发送端,此时常常是一个CPU用Slave模式加载,认为有效数据结束,强行停止了进一步的时钟发送,那么有时可以观测到此种状况。此时去检查BIT18-20 STARTUP_STATE,根据具体的情况,也有一定概率看到不是预期的100.

        标准的做法是,在默认设置下持续发送CCLK时钟,直至检测到DONE管脚已经拉高,然后再多发送至少64个时钟信号。如果修改了配置默认设置,比如选择了wait for PLL to lock,那么需要更多的时钟信号。

状态字看起来和没有发出配置数据,即和刚上电的表现一样。

      这种情况,说明所有发出的配置数据都被FPGA忽略掉了,因为它不认为你发送过来的是有效配置数据。

       FPGA的配置文件里面,有一个数据同步头,一般是AA 99 55 66。如果由于某种原因,这个同步头FPGA都没有认出来,那么后续的数据会被它全部忽略。

一般原因

1. 在非serial配置模式中,没有正确的做Byte Swap;

2. 配置文件生成时,BPI数据线宽设置不对(x8, x16, x32选错了)

3. SPI的x1, x2, x4选择错误;

4. 严重的板级SI问题导致的CRC错误;

        以上列举了常见的一些配置错误和其状态字的相应表现。需要注意的是,状态字寄存器有32位,其组合可以说是相当多的。除了上述情况,配置失败定位还可能需要结合状态字,加载过程中log文件,硬件设计原理图和工具版本信息,以及通过其他一些配置接口在不同条件下去对比测试才能逐步定位。 作者:硬件光阴 https://www.bilibili.com/read/cv26835920/?spm_id_from=333.999.0.0 出处:bilibili

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/732620.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【绿色碳中和】各国城市历年空气污染指标数据集(2017-2023)

一、有关“空气污染”的发文趋势和主题分布 全新整理的2017-2023年各国城市空气污染实证数据,供大家研究使用。 二、数据来源:IQAir官网(存在部分缺失值) 三、时间跨度:2017-2023年 四、数据范围:世界各国…

MybatisPlus知识点总结(基于黑马2023MybatisPlus课程)

MybatisPlus知识点总结 配套资料 黑马微服务框架笔记,内含mpMybatisPlus.pptxMyBatis-Plus (mp中文官网) 快速入门 入门案例 使用MybatisPlus的基本步骤:1.引入MybatisPlus依赖,代替Mybatis依赖2.定义Mapper接口并继…

Ubuntu上安装任意版本nodejs方法

在Ubuntu中安装指定版本的Node.js,可以使用Node Version Manager (NVM)。以下是安装步骤: 首先,安装NVM。在命令行中输入: curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.38.0/install.sh | bash 这个命令会下载并…

【附教程】2024,人工智能+声音,看这里就够了~16款AI音乐/音频/音效,声音克隆等ai软件与工具大合集~

AI音乐音频领域的技术正在迅速发展,为音乐创作和编辑带来了革命性的改变。这些技术通过深度学习和生成式模型,能够理解并模仿音乐的复杂结构和情感,从而创作出高质量的音乐作品。 AI音乐音频技术使得音乐创作变得更加高效和便捷。创作者只需…

杨辉三角(C语言)

杨辉三角 一.什么是杨辉三角 一.什么是杨辉三角 每个数等于它上方两数之和。 每行数字左右对称,由1开始逐渐变大。 第n行的数字有n项。 前n行共[(1n)n]/2 个数。 … 当前行的数上一行的数上一行的前一列的数 void yanghuisanjian(int arr[][20], int n) {for (int i…

blender怎么导入stl格式文件?

stl格式,一般是用来3D打印用的文件,这种模型一般很小,经常做来做一些DIY的配件,如下图,一共有七八个模型,3D打印机把每个模型实体打出来后,就可以给小朋友组装当智益玩具玩了,我们把…

【Node.js从基础到高级运用】二、搭建开发环境

Node.js入门:搭建开发环境 在上一篇文章中,我们介绍了Node.js的基础概念。现在,我们将进入一个更实际的阶段——搭建Node.js的开发环境。这是每个Node.js开发者旅程中的第一步。接下来,我们将详细讨论如何安装Node.js和npm&#…

外泌体相关基因肝癌临床模型预测——2-3分纯生信文章复现——03.差异表达基因筛选(2)

内容如下: 1.外泌体和肝癌TCGA数据下载 2.数据格式整理 3.差异表达基因筛选 4.预后相关外泌体基因确定 5.拷贝数变异及突变图谱 6.外泌体基因功能注释 7.LASSO回归筛选外泌体预后模型 8.预后模型验证 9.预后模型鲁棒性分析 10.独立预后因素分析及与临床的…

力扣199. 二叉树的右视图(DFS,BFS)

Problem: 199. 二叉树的右视图 文章目录 题目描述思路解题方法复杂度Code 题目描述 思路 无论是DFS还是BFS我们都要思考到达二叉树的每一层(或者每一层中的每一个节点)时,我们都该如何按题目要求做出对应得处理!!!在本体中我们主要是&#x…

Solidity攻击合约:重入攻击与危害分析

以太坊智能合约开发中,重入攻击是一种常见的安全漏洞。这种攻击通常发生在合约的递归调用中,攻击者通过构造恶意交易,使得原本合约在执行过程中不断调用自身或其他合约,从而耗尽合约的Gas(交易费用)&#x…

Oracle LeetCode 高频 SQL 50 题(进阶版)

https://leetcode.cn/studyplan/sql-premium-50/ 一、查询 1821. 寻找今年具有正收入的客户 selectcustomer_id from Customers where year 2021 group by customer_id having sum(revenue) > 0183. 从不订购的客户 select c.name as Customers from Customers c left j…

【蓝牙协议栈】【经典蓝牙】【BLE蓝牙】蓝牙协议规范(HCI、L2CAP、SDP、RFOCMM)

目录 1. 蓝牙协议规范(HCI、L2CAP、SDP、RFOCMM) 1.1 主机控制接口协议 HCI 1.2 逻辑链路控制与适配协议 L2CAP 1.3 服务发现协议SDP 1.4 串口仿真协议 RFCOMM 1. 蓝牙协议规范(HCI、L2CAP、SDP、RFOCMM) 1.1 主机控制接口协…

七、软考-系统架构设计师笔记-数据库设计基础知识

1、数据库基础概念 数据库基本概念 数据(Data)数据库(Database)数据库管理系统(DBMS)数据库系统(DBS) 1.数据(Data) 是数据库中存储的基本对象,是描述事物的符号记录。 数据的种类: 文本、图形、图像、音频、视频等。 2.数据库(Database, DB) 数据库…

基于机器学习的网络入侵检测与特征选择及随机森林分类器性能评估(NSL-KDD数据集)

简介 本文将详细介绍如何利用Python和相关机器学习库对NSL-KDD数据集进行预处理,特征选择,并通过随机森林算法构建网络入侵检测模型。同时,还将展示如何计算并可视化模型的ROC曲线以评估其性能。 首先,我们导入了必要的库&#…

Unity 让角色动起来(动画控制器)

下载素材: 导入后,找到预制体和动画。 新建动画控制器,拖动到预制体的新版动画组件上。 建立动画关系 创建脚本,挂载到预制体上。 using System.Collections; using System.Collections.Generic; using UnityEngine;public c…

Swift SwiftUI 学习笔记 2024

Swift SwiftUI 学习笔记 2024 一、资源 视频资源 StanfordUnivercity 公开课 2023: https://cs193p.sites.stanford.edu/2023 教程 Swift 初识:基础语法:https://docs.swift.org/swift-book/documentation/the-swift-programming-language/guidedtour/…

工地安全反光衣穿戴监测报警摄像机

工地安全反光衣穿戴监测报警摄像机是为了提高工地施工人员的安全意识和监管效率而设计的。这种设备结合了反光衣、监测系统和报警摄像机的功能,可以有效减少工地事故的发生。 首先,工地安全反光衣是一种具有高度可见度的服装,能够使穿戴者在夜…

程序如何知道mqtt设备是否在线

在做物联网设备的时候经常会碰到设备的在线与掉线 问题:emqx如何来实现这个在线与掉线 实现:添加一个规则,程序监控这个规则 1、SELECT * FROM "$events/client_connected", "$events/client_disconnected" 2、添加一…

离散数学——(4)

目录 1.主析取范式 2.大项 3.主合区范式 4.范式的求法 真值表法 5.推理理论 直接证法 1.主析取范式 2.大项 3.主合区范式 4.范式的求法 真值表法 5.推理理论 直接证法

【C++】手把手教你模拟实现 vector

目录 一、构造/析构/拷贝 1、构造函数 1️⃣无参的构造函数 2️⃣带参的构造函数 3️⃣类模板的构造函数 2、析构函数 3、拷贝构造 二、修改操作 1、reserve 【错误版本】 🌟【解答】正确版本 2、resize 3、push_back 4、pop_back 5、insert 6、era…