FPGA高端项目:FPGA基于GS2971的SDI视频接收+HLS图像缩放+多路视频拼接,提供4套工程源码和技术支持

目录

  • 1、前言
    • 免责声明
  • 2、相关方案推荐
    • 本博已有的 SDI 编解码方案
    • 本方案的SDI接收转HDMI输出应用
    • 本方案的SDI接收+图像缩放应用
    • 本方案的SDI接收+纯verilog图像缩放+纯verilog多路视频拼接应用
    • 本方案的SDI接收+OSD多路视频融合叠加应用
    • 本方案的SDI接收+HLS多路视频融合叠加应用
    • 本方案的SDI接收+GTX 8b/10b编解码SFP光口传输
    • FPGA的SDI视频编解码项目培训
  • 3、详细设计方案
    • 设计原理框图
    • SDI 相机
    • GS2971
    • BT1120转RGB
    • HLS图像缩放详解
    • Video Mixer多路视频拼接
    • VDMA图像缓存
    • HDMI输出
    • 工程源码架构
  • 4、工程源码15详解-->SDI接收+HLS图像缩放+Video Mixer 2路视频拼接
  • 5、工程源码16详解-->SDI接收+HLS图像缩放+Video Mixer 4路视频拼接
  • 6、工程源码17详解-->SDI接收+HLS图像缩放+Video Mixer 8路视频拼接
  • 7、工程源码18详解-->SDI接收+HLS图像缩放+Video Mixer 16路视频拼接
  • 8、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 9、上板调试验证
    • 准备工作
    • 工程15-->2路视频缩放拼接输出-->视频演示
    • 工程16-->4路视频缩放拼接输出-->视频演示
    • 工程17-->8路视频缩放拼接输出-->视频演示
    • 工程18-->16路视频缩放拼接输出-->视频演示
  • 10、福利:工程代码的获取

FPGA高端项目:FPGA基于GS2971的SDI视频接收+HLS图像缩放+多路视频拼接,提供4套工程源码和技术支持

1、前言

目前FPGA实现SDI视频编解码有两种方案:一是使用专用编解码芯片,比如典型的接收器GS2971,发送器GS2972,优点是简单,比如GS2971接收器直接将SDI解码为并行的YCrCb422,GS2972发送器直接将并行的YCrCb422编码为SDI视频,缺点是成本较高,可以百度一下GS2971和GS2972的价格;另一种方案是使用FPGA逻辑资源部实现SDI编解码,利用Xilinx系列FPGA的GTP/GTX资源实现解串,利用Xilinx系列FPGA的SMPTE SDI资源实现SDI编解码,优点是合理利用了FPGA资源,GTP/GTX资源不用白不用,缺点是操作难度大一些,对FPGA开发者的技术水平要求较高。有意思的是,这两种方案在本博这里都有对应的解决方案,包括硬件的FPGA开发板、工程源码等等。

本设计基于Xilinx的Zynq7100-xc7z100ffg900-2中端FPGA开发板使用GS2971实现SDI视频接收+HLS图像缩放+多路视频拼接+转HDMI输出,输入源为一个HD-SDI相机,也可以使用SD-SDI或者3G-SDI相机,因为本设计是三种SDI视频自适应的;同轴的SDI视频通过同轴线连接到GS2971转接板,GS2971解码芯片将同轴的串行的SDI视频解码为并行的BT1120格式视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;本设计的目的是做HLS图像缩放+HLS多路视频拼接后输出解码的SDI视频,针对目前市面上的主流项目需求,本博设计了HDMI输出方式,需要进行BT1120视频转RGB+HLS图像缩放+HLS多路视频拼接+图像缓存操作;本设计使用BT1120转RGB模块实现视频格式转换;图像缩放采用HLS实现的图像缩放架构实现SDI的图像缩放操作,将原始的1920x1080分辨率的SDI视频缩小为960x540,当然,读者也可以缩放为其他分辨率;多路视频拼接方案使用Xilinx官方的Video Mixer IP核方案,该IP最多支持16路视频拼接;图像缓存使用Xilinx官方的VDMA架构,该架构简单灵活,输入接口为AXIS视频流,缓存介质为PS端DDR3;图像从DDR3读出后,进入HDMI发送模块输出HDMI显示器;本博客提供4套工程源码,具体如下,请点击图片放大查看:
在这里插入图片描述
现对上述4套工程源码做如下解释,方便读者理解:
工程源码15:
输入视频为HD-SDI相机,输入分辨率为1920x1080@30Hz,经过GS2971解码+BT1120转RGB+HLS图像缩放+Video Mixer 2路视频拼接+VDMA图像缓存+HDMI输出模块后,以HDMI接口方式输出,图像缩放方案采用HLS方案,从1920x1080缩放为960x1080,然后将缩放后的视频复制为2份以模拟2路视频,再将这2路视频进行视频拼接,视频拼接方案采用Xilinx官方的Video Mixer方案;最后在HDMII 1920x1080的输出分辨率下叠加2路拼接视频,即2分屏显示;

工程源码16:
输入视频为HD-SDI相机,输入分辨率为1920x1080@30Hz,经过GS2971解码+BT1120转RGB+HLS图像缩放+Video Mixer 4路视频拼接+VDMA图像缓存+HDMI输出模块后,以HDMI接口方式输出,图像缩放方案采用HLS方案,从1920x1080缩放为960x540,然后将缩放后的视频复制为4份以模拟4路视频,再将这4路视频进行视频拼接,视频拼接方案采用Xilinx官方的Video Mixer方案;最后在HDMII 1920x1080的输出分辨率下叠加4路拼接视频,即4分屏显示;

工程源码17:
输入视频为HD-SDI相机,输入分辨率为1920x1080@30Hz,经过GS2971解码+BT1120转RGB+HLS图像缩放+Video Mixer 8路视频拼接+VDMA图像缓存+HDMI输出模块后,以HDMI接口方式输出,图像缩放方案采用HLS方案,从1920x1080缩放为480x540,然后将缩放后的视频复制为8份以模拟8路视频,再将这8路视频进行视频拼接,视频拼接方案采用Xilinx官方的Video Mixer方案;最后在HDMII 1920x1080的输出分辨率下叠加8路拼接视频,即8分屏显示;

工程源码18:
输入视频为HD-SDI相机,输入分辨率为1920x1080@30Hz,经过GS2971解码+BT1120转RGB+HLS图像缩放+Video Mixer 16路视频拼接+VDMA图像缓存+HDMI输出模块后,以HDMI接口方式输出,图像缩放方案采用HLS方案,从1920x1080缩放为240x540,然后将缩放后的视频复制为16份以模拟16路视频,再将这16路视频进行视频拼接,视频拼接方案采用Xilinx官方的Video Mixer方案;最后在HDMII 1920x1080的输出分辨率下叠加16路拼接视频,即16分屏显示;

本文详细描述了Xilinx的Zynq7100-xc7z100ffg900-2 FPGA开发板使用GS2971实现SDI视频接收+HLS图像缩放+Video Mixer多路视频拼接+转HDMI输出,工程代码编译通过后上板调试验证,可直接项目移植,适用于在校学生做毕业设计、研究生项目开发,也适用于在职工程师做项目开发,可应用于医疗、军工等行业的数字成像和图像传输领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

本博已有的 SDI 编解码方案

我的博客主页开设有SDI视频专栏,里面全是FPGA编解码SDI的工程源码及博客介绍;既有基于GS2971/GS2972的SDI编解码,也有基于GTP/GTX资源的SDI编解码;既有HD-SDI、3G-SDI,也有6G-SDI、12G-SDI等;专栏地址链接:
点击直接前往

本方案的SDI接收转HDMI输出应用

本方案采用GS2971接收SDI视频,然后进行图像缓存操作(图像缓存方案包括FDMA方案和VDMA方案,缓存介质包括PL端DDR3、PS端DDR3),最后以HDMI方式输出,提供3套工程源码,3套工程源码详情请参考“1、前言”中的截图,详细设计方案请参考我专门的博客,博客链接如下:
点击直接前往

本方案的SDI接收+图像缩放应用

本方案采用GS2971接收SDI视频,然后进行图像缩放操作(图像缩放方案包括纯verilog图像缩放方案和HLS图像缩放方案),再进行图像缓存操作(图像缓存方案包括FDMA方案和VDMA方案,缓存介质包括PL端DDR3、PS端DDR3),最后以HDMI方式输出,提供3套工程源码,3套工程源码详情请参考“1、前言”中的截图,详细设计方案请参考我专门的博客,博客链接如下:
点击直接前往

本方案的SDI接收+纯verilog图像缩放+纯verilog多路视频拼接应用

本方案采用GS2971接收SDI视频,然后进行图像缩放操作(图像缩放方案为纯verilog图像缩放),再进行多路视频拼接(包括2路、4路、8路、16路视频拼接,拼接方案为纯verilogFDMA方案,视频拼接和图像缓存为一个整体,缓存介质包括PL端DDR3、PS端DDR3),最后以HDMI方式输出,提供8套工程源码,8套工程源码详情请参考“1、前言”中的截图,详细设计方案请参考我专门的博客,博客链接如下:
点击直接前往

本方案的SDI接收+OSD多路视频融合叠加应用

本方案采用GS2971接收SDI视频,然后进行多路视频融合叠加(方案为HLS多路视频融合叠加),再进行图像缓存操作(图像缓存方案为VDMA方案,缓存介质包括PS端DDR3),最后以HDMI方式输出,提供1套工程源码,工程源码详情请参考“1、前言”中的截图,详细设计方案请参考我专门的博客,博客链接如下:
点击直接前往

本方案的SDI接收+HLS多路视频融合叠加应用

本方案采用GS2971接收SDI视频,然后进行多路视频融合叠加(方案为HLS多路视频融合叠加),再进行图像缓存操作(图像缓存方案为VDMA方案,缓存介质包括PS端DDR3),最后以HDMI方式输出,提供1套工程源码,工程源码详情请参考“1、前言”中的截图,详细设计方案请参考我专门的博客,博客链接如下:
点击直接前往

本方案的SDI接收+GTX 8b/10b编解码SFP光口传输

本方案采用GS2971接收SDI视频,然后进行8b/10b编解码作(8b/10b编解码方案为GTX高速接口方案,线速率为5G),再通过板载的SFP光口实现数据回环,再进行图像缓存操作(图像缓存方案为FDMA方案,缓存介质包括PL端DDR3、PS端DDR3),最后以HDMI方式输出,提供2套工程源码,2套工程源码详情请参考“1、前言”中的截图,详细设计方案请参考我专门的博客,博客链接如下:
点击直接前往

FPGA的SDI视频编解码项目培训

基于目前市面上FPGA的SDI视频编解码项目培训较少的特点,本博专门开设了FPGA的SDI视频编解码高级项目培训班,专门培训SDI视频的编解码,具体培训计划细节如下:
1、我发你上述全套工程源码和对应的工程设计文档网盘链接,你保存下载,作为培训的核心资料;
2、你根据自己的实际情况安装好对应的开发环境,然后对着设计文档进行浅层次的学习;
3、遇到不懂的随时问我,包括代码、职业规划、就业咨询、人生规划、战略规划等等;
4、每周末进行一次腾讯会议,我会检查你的学习情况和面对面沟通交流;
5、你可以移植代码到你自己的FPGA开发板上跑,如果你没有板子,你根据你自己的需求修改代码后,编译工程,把bit发我,我帮你下载到我的板子上验证;或者你可以买我的开发板;

3、详细设计方案

设计原理框图

4套工程源码设计原理框图如下,该设计采用HLS图像缩放+Video Mixer多路视频拼接+VDMA图像缓存方案:
在这里插入图片描述

SDI 相机

我用到的是SDI相机为HD-SDI相机,输出分辨率为1920x1080@30Hz,本工程对SDI相机的选择要求范围很宽,可以是SD-SDI、HD-SDI、3G-SDI,因为很设计对这三种SDI视频是自动识别并自适应的;如果你的手里没有SDI相机,也可以去某宝买HDMI转SDI盒子,一百多块钱就可以搞定,使用笔记本电脑模拟视频源,用HDMI线连接HDMI转SDI盒子,输出SDI视频做事视频源,可以模拟SDI相机;

GS2971

本设计采用GS2971芯片解码SDI,GS2971不需要软件配置,硬件电阻上下拉即可完成配置,本设计配置为输出BT1120格式视频,当然,你在设计电路时也可以配置为输出CEA861格式视频;GS2971硬件架构如下,提供PDF格式原理图:
在这里插入图片描述

BT1120转RGB

BT1120转RGB模块的作用是将SMPTE SD/HD/3G SDI IP核解码输出的BT1120视频转换为RGB888视频,它由BT1120转CEA861模块、YUV422转YUV444模块、YUV444转RGB888三个模块组成,该方案参考了Xilinx官方的设计;BT1120转RGB模块代码架构如下:
在这里插入图片描述

HLS图像缩放详解

该方案采用HLS方案C++代码实现,并综合成RTL后封装为IP,可在vivado中调用该IP,关于这个方案详情,请参考我之前的博客,博客链接如下:
点击直接前往
该IP在vivado中的综合资源占用情况如下:
在这里插入图片描述
HLS图像缩放需要在SDK中运行驱动和用户程序才能正常工作,我在工程中给出了C语言程序,具体参考工程源码;

Video Mixer多路视频拼接

采用Xilinx官方的Video Mixer IP核实现多路视频拼接,Video Mixer最多只能实现16路视频拼接,以工程15的2路视频拼接为例,Video Mixer的资源消耗截图如下:
在这里插入图片描述
Video Mixer IP核UI配置界面如下:
在这里插入图片描述
Video Mixer需要在SDK中运行驱动和用户程序才能正常工作,我在工程中给出了C语言程序,具体参考工程源码;

VDMA图像缓存

图像缓存使用Xilinx官方的VDMA架构实现图像3帧缓存,缓存介质为板载的PS端DDR3;VDMA图像缓存架构由Video In to AXI4-Stream、VDMA、Zynq软核、Video Timing Controller、AXI4-Stream To Video Out构成;详情请参考后面的“工程源码架构小节”,VDMAIP核UI配置界面如下:
在这里插入图片描述
VDMA加需要在SDK中运行驱动和用户程序才能正常工作,我在工程中给出了C语言程序,具体参考工程源码;

HDMI输出

HDMI输出架构由VGA时序和HDMI输出模块构成,VGA时序负责产生输出的1920x1080@60Hz的时序,并控制FDMA数据读出,HDMI输出模块负责将VGA的RGB视频转换为差分的TMDS视频,代码架构如下:
在这里插入图片描述
HDMI输出模块采用verilog代码手写,可以用于FPGA的HDMI发送应用,关于这个模块,请参考我之前的博客,博客地址:点击直接前往

工程源码架构

本博客提供4套工程源码,4套代码的vivado Block Design设计具有相似性,以工程15的2路视频拼接为例,Block Design截图如下,其他工程与之类似;
在这里插入图片描述
以工程15的2路视频拼接为例,工程源码架构如下图,其工程16、17、18、19与之类似:
在这里插入图片描述
4套工程源码PL端时钟由Zynq软核提供,所以需要运行运行SDK以启动Zynq,此外,HLS图像缩放、VDMA、Video Mixer等IP核都需要运行软件驱动才能正常工作,所以,以工程15的2路视频拼接为例,SDK软件代码架构如下,其他3套工程与之类似:
在这里插入图片描述

4、工程源码15详解–>SDI接收+HLS图像缩放+Video Mixer 2路视频拼接

开发板FPGA型号:Xilinx–Zynq7100–xc7z100ffg900-2;
开发环境:Vivado2019.1;
输入:HD-SDI相机,分辨率1920x1080@30Hz;
输出:HDMI,1080P分辨率下的960x540的2路视频拼接2分屏显示;
缩放方案:HLS图像缩放方案;
输入输出缩放:输入1920x1080–>输出960x540;
视频拼接方案:Video Mixer 2路视频拼接;
图像缓存方案:VDMA方案;
图像缓存路径:PS端DDR3;
工程作用:此工程目的是让读者掌握FPGA实现SDI接收+图像缩放+2路视频拼接的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节“工程源码架构“小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

5、工程源码16详解–>SDI接收+HLS图像缩放+Video Mixer 4路视频拼接

开发板FPGA型号:Xilinx–Zynq7100–xc7z100ffg900-2;
开发环境:Vivado2019.1;
输入:HD-SDI相机,分辨率1920x1080@30Hz;
输出:HDMI,1080P分辨率下的960x540的4路视频拼接4分屏显示;
缩放方案:HLS图像缩放方案;
输入输出缩放:输入1920x1080–>输出960x540;
视频拼接方案:4路视频拼接;
图像缓存方案:VDMA方案;
图像缓存路径:PS端DDR3;
工程作用:此工程目的是让读者掌握FPGA实现SDI接收+图像缩放+4路视频拼接的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节“工程源码架构“小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

6、工程源码17详解–>SDI接收+HLS图像缩放+Video Mixer 8路视频拼接

开发板FPGA型号:Xilinx–Zynq7100–xc7z100ffg900-2;
开发环境:Vivado2019.1;
输入:HD-SDI相机,分辨率1920x1080@30Hz;
输出:HDMI,1080P分辨率下的480x540的8路视频拼接8分屏显示;
缩放方案:HLS图像缩放方案;
输入输出缩放:输入1920x1080–>输出480x540;
视频拼接方案:8路视频拼接;
图像缓存方案:VDMA方案;
图像缓存路径:PS端DDR3;
工程作用:此工程目的是让读者掌握FPGA实现SDI接收+图像缩放+8路视频拼接的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节“工程源码架构“小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

7、工程源码18详解–>SDI接收+HLS图像缩放+Video Mixer 16路视频拼接

开发板FPGA型号:Xilinx–Zynq7100–xc7z100ffg900-2;
开发环境:Vivado2019.1;
输入:HD-SDI相机,分辨率1920x1080@30Hz;
输出:HDMI,1080P分辨率下的240x540的8路视频拼接16分屏显示;
缩放方案:HLS图像缩放方案;
输入输出缩放:输入1920x1080–>输出240x540;
视频拼接方案:16路视频拼接;
图像缓存方案:VDMA方案;
图像缓存路径:PS端DDR3;
工程作用:此工程目的是让读者掌握FPGA实现SDI接收+图像缩放+16路视频拼接的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节“工程源码架构“小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

8、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

9、上板调试验证

准备工作

需要准备的器材如下:
FPGA开发板;
SDI摄像头;
SDI转HDMI盒子;
HDMI显示器;
我的开发板了连接如下:
在这里插入图片描述

工程15–>2路视频缩放拼接输出–>视频演示

输入视频为HD-SDI相机,输入分辨率为1920x1080@30Hz,经过GS971 SDI接收+图像缩放+2路视频拼接,以HDMI方式输出,输入视频从1920x1080缩放为960x1080,然后将缩放后的视频复制为2份以模拟2路视频,再将这2路视频进行视频拼接,最后在HDMI 1920x1080的输出分辨率下叠加2路拼接视频,即2分屏显示;输出视频演示如下:

GS2971接收SDI视频-图像缩放+2路视频拼接PS

工程16–>4路视频缩放拼接输出–>视频演示

输入视频为HD-SDI相机,输入分辨率为1920x1080@30Hz,经过GS971 SDI接收+图像缩放+4路视频拼接,以HDMI方式输出,输入视频从1920x1080缩放为960x540,然后将缩放后的视频复制为4份以模拟4路视频,再将这4路视频进行视频拼接,最后在3G-SDI 1920x1080的输出分辨率下叠加4路拼接视频,即4分屏显示;输出视频演示如下:

GS2971接收SDI视频-图像缩放+4路视频拼接

工程17–>8路视频缩放拼接输出–>视频演示

输入视频为HD-SDI相机,输入分辨率为1920x1080@30Hz,经过GS971 SDI接收+图像缩放+8路视频拼接,以HDMI方式输出,输入视频从1920x1080缩放为480x540,然后将缩放后的视频复制为8份以模拟8路视频,再将这8路视频进行视频拼接,最后在3G-SDI 1920x1080的输出分辨率下叠加8路拼接视频,即8分屏显示;输出视频演示如下:

GS2971接收SDI视频-图像缩放+8路视频拼接

工程18–>16路视频缩放拼接输出–>视频演示

输入视频为HD-SDI相机,输入分辨率为1920x1080@30Hz,经过GS971 SDI接收+图像缩放+8路视频拼接,以HDMI方式输出,输入视频从1920x1080缩放为240x540,然后将缩放后的视频复制为16份以模拟16路视频,再将这16路视频进行视频拼接,最后在3G-SDI 1920x1080的输出分辨率下叠加16路拼接视频,即16分屏显示;输出视频演示如下:

GS2971接收SDI视频-图像缩放+16路视频拼接

10、福利:工程代码的获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/731966.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity中PICO实现移动交互

文章目录 前言一、在允许行走的地面加上对应的组件1、Teleportation Anchor 移动锚点2、Teleportation Area 移动区域 二、在 玩家(需要移动的对象)上挂载对应组件1、Teleportation Provider 被移动对象2、在 Teleportation Anchor 或 Teleportation Are…

【go语言开发】yaml文件配置和解析

本文主要介绍使用第三方库来对yaml文件配置和解析。首先安装yaml依赖库;然后yaml文件中配置各项值,并给出demo参考;最后解析yaml文件,由于yaml文件的配置在全局中可能需要,可定义全局变量Config,便于调用 文…

CCProxy代理服务器地址的设置步骤

目录 前言 一、下载和安装CCProxy 二、启动CCProxy并设置代理服务器地址 三、验证代理服务器设置是否生效 四、使用CCProxy进行代理设置的代码示例 总结 前言 CCProxy是一款常用的代理服务器软件,可以帮助用户实现网络共享和上网代理。本文将详细介绍CCProxy…

【鸿蒙 HarmonyOS 4.0】应用状态:LocalStorage/AppStorage/PersistentStorage

一、介绍 如果要实现应用级的,或者多个页面的状态数据共享,就需要用到应用级别的状态管理的概念。 LocalStorage:页面级UI状态存储,通常用于UIAbility内、页面间的状态共享。AppStorage:特殊的单例LocalStorage对象&…

数据库系统概念(第一周)

⚽前言 🏐四个基本概念 一、数据 定义 种类 特点 二、数据库 三、数据库管理系统(DBMS) 四、 数据库系统(DBS) 🏀数据库系统和文件系统对比 文件系统的弊端 🥎数据视图 数据抽象 …

java 环境配置(保姆级最新版)

😀前言 ps 因为网络上教程太多太杂所以干脆直接自己出个教程方便自己复习也希望帮助到大家 文章目录 第一查看自己电脑的系统类型第二 jdk下载历史jdk下载 第三 jdk安装第四 环境搭配Java_Home 配置Path 配置CLASSPATH 配置 检测是否配置成功 第一查看自己电脑的系统…

机器学习流程—数据预处理 清洗

机器学习流程—数据预处理 清洗 数据清洗因为它涉及识别和删除任何丢失、重复或不相关的数据。数据清理的目标是确保数据准确、一致且无错误,因为不正确或不一致的数据会对 ML 模型的性能产生负面影响。专业数据科学家通常会在这一步投入大量时间,因为他们相信Better data b…

Dynamo3.0.3——六年来最大的更新

Hello大家好!我是九哥~ 前几天,Dynamo Core 3.0.0版本发布,迎来了Dynamo六年来最大的一次更新。最大的改变,是更新到了.net8,这回对Dynamo节点包产生不小影响。接下来我们详细看一下都有哪些变化。 首先&#xff0…

Charles的安装及配置

1 Charles激活 激活网址:https://tools.zzzmode.com/mytools/charles/ 得到的激活码后打开Charles,选择help里的registered 进行登录 2 进行ssl代理设置(用来抓取https的请求) 3 输入ssl代理的host和port 4 安装本机证书(选择完成后点击下一步或确定就行) 手机相关配置(保持手…

瑞_23种设计模式_模板方法模式

文章目录 1 模板方法模式(Template Pattern) ★ 钩子函数1.1 介绍1.2 概述1.3 模板方法模式的结构1.4 模板方法模式的优缺点1.5 模板方法模式的使用场景 2 案例一2.1 需求2.2 代码实现 3 案例二3.1 需求3.2 代码实现 4 JDK源码解析(InputStre…

[BUUCTF]-PWN:starctf_2019_babyshell解析(汇编\x00开头绕过+shellcode)

查看保护 查看ida 这里就是要输入shellcode,但是函数会有检测。 在shellcode前面构造一个以\x00机器码开头的汇编指令,这样就可以绕过函数检查了。 完整exp: from pwn import* context(log_leveldebug,archamd64) pprocess(./babyshell)she…

【C++】C语言为什么不能函数重载?

文章目录 1.概念2. C为什么支持函数重载? 1.概念 C允许功能类似的同名函数出现,只要形参列表中的参数个数、类型、类型顺序不同,满足这三个条件中任意一个则构成函数重载,函数重载常用来处理实现功能类似数据类型不同的问题。 /…

【Docker4】使用Harbor搭建私有仓库

Docker私有仓库一、搭建本地私有仓库1、daemon.json 配置文件中常用配置项2、搭建私有仓库3、Docker容器重启策略 二、Docker--harbor私有仓库部署与管理1、Harbor 简介2、Harbor的特性3、Harbor的构成4、Harbor 部署4.1、部署 Docker-Compose 服务4.2、部署 Harbor 服务4.3、启…

解决文件过大无法存入U盘

如果文件达到4GB以上大小,且还是比U盘容量小,却放不进去。 这是由于格式问题。 U盘默认格式是FAT32,存放的单个文件大小不能超过4GB 可以修改U盘格式为exFAT或者NTFS格式。这样不会收到限制 下面以Windows11系统进行演示: 1.连接U盘 2.按WINe打开文件管理器 3.点击"文件…

雷卯的ESD管SDA3311DN可以替代AZ5883-01F ---国产化替代篇

已经有很多客户选用雷卯的 SDA3311DN替代Amazing的 AZ5883-01F,客户可以获得更好的价格和更快的交期。 SDA3311DN主要应用于对3.3V供电的静电浪涌防护等,特别是在一些受空间所限的小电子设备很受青睐。 雷卯的SDA3311DN优势: IPP大(65A) &…

快速瓦斯封孔器请满载希望出发

不论昨天如何,今天请满载希望出发!每一个微笑、每一次服务,都是我们通往成功巅峰的阶梯。 一、 用途: CKF-I型快速瓦斯封孔器用以快速封闭采面卸压抽放钻孔,具有重量轻、速度快、操作简便的特点&#xff1…

模拟框图的表示

微分方程的建立 目的:为建立LTI系统的数学模型,需要列写微分方程式。 以RLC电路为例: 以Us为输入,Uc为输入,则可以得出以下微分方程式: 抽去物理意义后,得到一般的常微分线性方程:…

重塑语言智能未来:掌握Transformer,驱动AI与NLP创新实战

Transformer模型 Transformer是自然语言理解(Natural Language Understanding,NLU)的游戏规则改变者,NLU 是自然语言处理(Natural Language Processing,NLP)的一个子集。NLU已成为全球数字经济中AI 的支柱之一。 Transformer 模型标志着AI 新…

怎么给电脑换个ip地址?电脑换ip方法

在数字化时代,IP地址已成为我们在线身份的一部分。然而,出于网络安全、隐私保护或访问特定内容的需求,我们有时需要更改电脑的IP地址。这篇文章将为您提供简单易懂的步骤,教您如何为电脑更换IP地址,并分享一些实用建议…

ThreadLocal 内存泄漏问题

ThreadLocal 用于存储线程本地的变量,如果创建了一个 ThtreadLocal 变量,在多线程访问这个变量的时候,每个线程都会在自己线程的本地内存中创建一份变量的副本,从而起到线程隔离的作用。 Thread、ThreadLocal、ThreadLocalMap 之…