Humanoid-Gym 开源人形机器人端到端强化学习训练框架!星动纪元联合清华大学、上海期智研究院发布!

系列文章目录


前言

Humanoid-Gym: Reinforcement Learning for Humanoid Robot with Zero-Shot Sim2Real Transfer

GitHub Repository: GitHub - roboterax/humanoid-gym: Humanoid-Gym: Reinforcement Learning for Humanoid Robot with Zero-Shot Sim2Real Transfer


一、介绍

Humanoid-Gym是一个基于Nvidia Isaac Gym的易于使用的强化学习(RL)框架,旨在训练仿人机器人的运动技能,强调从仿真到真实世界环境的零误差转移。Humanoid-Gym 还集成了一个从 Isaac Gym 到 Mujoco 的仿真到仿真框架,允许用户在不同的物理仿真中验证训练好的策略,以确保策略的鲁棒性和通用性。

RobotEra 的 XBot-S(身高 1.2 米的仿人机器人)和 XBot-L(身高 1.65 米的仿人机器人)在真实环境中对该代码库进行了验证,实现了模拟到现实的零距离传输。

用于评估的机器人硬件平台

二、仿真环境搭建

 

欢迎访问我们的 Humanoid-Gym!

Humanoid-Gym 是一个基于 Nvidia Isaac Gym 的易于使用的强化学习(RL)框架,旨在训练仿人机器人的运动技能,强调从仿真到真实环境的零误差转移。Humanoid-Gym 还集成了从 Isaac Gym 到 Mujoco 的仿真到仿真框架,允许用户在不同的物理仿真中验证训练好的策略,以确保策略的鲁棒性和通用性。

RobotEra 的 XBot-S(身高 1.2 米的仿人机器人)和 XBot-L(身高 1.65 米的仿人机器人)在真实环境中对该代码库进行了验证,实现了模拟到现实的零距离传输。

2.1 特点

1. 仿人机器人训练

该库为仿人机器人的训练提供全面的指导和脚本。Humanoid-Gym 具有针对仿人机器人的专门奖励,简化了模拟到真实转移的难度。在本资源库中,我们以 RobotEra 的 XBot-L 为主要示例。只需稍作调整,也可用于其他机器人。我们的资源包括设置、配置和执行。我们的目标是通过提供深入的训练和优化,让机器人为真实世界的运动做好充分准备。

全面的训练指南: 我们为训练过程的每个阶段提供详尽的演练。
逐步配置说明: 我们的指导清晰简洁,可确保高效的设置过程。
易于部署的执行脚本: 利用我们预先准备好的脚本,简化培训工作流程。

2. Sim2Sim 支持

sim2sim 管道,使您能够将训练有素的策略转移到高精度和精心设计的仿真环境中。获得机器人后,您就可以放心地在真实环境中部署经过 RL 训练的策略。

我们的仿真器设置,尤其是 Mujoco 的设置,都经过了精心调整,以接近真实世界的场景。这种细致的校准确保了仿真环境和真实世界环境中的性能密切吻合。这一改进使我们的仿真更可信,增强了我们对仿真适用于真实世界场景的信心。

3. 去噪世界模型学习(即将推出)

去噪世界模型学习(DWL)提出了一种先进的模拟到现实框架,将状态估计和系统识别融为一体。这种双方法确保机器人的学习和适应在现实世界中既实用又有效。

增强的仿真适应性: 优化机器人从仿真环境过渡到真实环境的技术。
改进的状态估计能力: 用于精确可靠的状态分析的先进工具。

2.2 安装

用 Python 3.8 生成一个新的 Python 虚拟环境,使用 

conda create -n myenv python=3.8

为获得最佳性能,我们建议使用 NVIDIA 驱动程序版本 525

sudo apt install nvidia-driver-525

。支持的最低驱动程序版本为 515。如果无法安装 525 版本,请确保系统至少有 515 版本,以维持基本功能。
使用 Cuda-11.7 安装 PyTorch 1.13:

conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia

使用

conda install numpy=1.23

安装 numpy-1.23。
安装 Isaac Gym:
从以下地址下载并安装 Isaac Gym Preview 4

Isaac Gym - Preview Release | NVIDIA Developer.

cd isaacgym/python && pip install -e .

 使用

cd examples && python 1080_balls_of_solitude.py

运行示例。
有关故障排除,请参阅 isaacgym/docs/index.html。
安装 Humanoid-Gym:
克隆此软件源。

cd humanoid_gym && pip install -e .

2.3 使用指南

示例

# Launching PPO Policy Training for 'v1' Across 8192 Environments
# This command initiates the PPO algorithm-based training for the humanoid task.
python scripts/train.py --task=humanoid_ppo --run_name v1 --headless --num_envs 8192# Evaluating the Trained PPO Policy 'v1'
# This command loads the 'v1' policy for performance assessment in its environment. 
# Additionally, it automatically exports a JIT model, suitable for deployment purposes.
python scripts/play.py --task=humanoid_ppo --run_name v1# Implementing Simulation-to-Simulation Model Transformation
# This command facilitates a sim-to-sim transformation using exported 'v1' policy.
python scripts/sim2sim.py --load_model /path/to/logs/XBot_ppo/exported/policies/policy_1.pt# Run our trained policy
python scripts/sim2sim.py --load_model /path/to/logs/XBot_ppo/exported/policies/policy_example.pt

1. 默认任务

humanoid_ppo

目的: 基准、PPO 策略、多坐标系低级控制
观察空间: 可变 (47 X H) 维度,其中 H 为坐标系帧数

[O_{t-H}\ldots O_t]
权限信息: 73 维
humanoid_dwl (即将推出)

2. PPO 策略

训练命令: 如需训练 PPO 策略,请执行

python humanoid/scripts/train.py --task=humanoid_ppo --load_run log_file_path --name run_name

运行训练有素的保单: 要部署训练有素的 PPO 政策,请使用

python humanoid/scripts/play.py --task=humanoid_ppo --load_run log_file_path --name run_name

默认情况下,将加载实验文件夹中最后一次运行的最新模型。不过,也可以通过调整训练配置中的 load_run 和 checkpoint 来选择其他运行迭代/模型。

3. Sim-to-sim

基于 Mujoco 的 Sim2Sim 部署: 使用下面的命令利用 Mujoco 执行仿真到仿真 (sim2sim) 部署:

python scripts/sim2sim.py --load_model /path/to/export/model.pt

4. 参数

CPU 和 GPU 使用情况: 要在 CPU 上运行仿真,请同时设置 --sim_device=cpu 和 --rl_device=cpu。对于 GPU 操作,请相应指定 --sim_device=cuda:{0,1,2...} 和 --rl_device={0,1,2...}。请注意,CUDA_VISIBLE_DEVICES 并不适用,因此必须匹配 --sim_device 和 --rl_device 设置。
无头操作: 包括 --headless,用于无渲染操作。
渲染控制: 按 "v "键可在训练过程中切换渲染。
策略位置: 训练后的策略保存在 humanoid/logs/<experiment_name>/<date_time>_<run_name>/model_<iteration>.pt 中。

5. 命令行参数

关于 RL 训练,请参考人形机器人/utils/helpers.py#L161。关于模拟到模拟过程,请参阅 humanoid/scripts/sim2sim.py#L169。

2.4 代码结构

每个环境都取决于一个 env 文件 (legged_robot.py) 和一个配置文件 (legged_robot_config.py)。后者包含两个类: LeggedRobotCfg(包含所有环境参数)和 LeggedRobotCfgPPO(表示所有训练参数)。
env 和 config 类都使用继承。
cfg 中指定的非零奖励标度会为总奖励贡献一个相应名称的函数。
任务必须使用 task_registry.register(name,EnvClass,EnvConfig,TrainConfig)进行注册。注册可以在 envs/__init__.py 中进行,也可以在本资源库之外进行。

2.5 添加新环境

基本环境 legged_robot 构建了一个粗糙地形运动任务。相应的配置没有指定机器人资产(URDF/ MJCF),也没有奖励标度。

如果需要添加新环境,请在 envs/ 目录下新建一个文件夹,并将配置文件命名为 <your_env>_config.py。新配置应继承现有环境配置。
如果提议使用新机器人
在 resources/ 文件夹中插入相应的资产。
在 cfg 文件中,设置资产路径,定义体名、默认关节位置和 PD 增益。指定所需的 train_cfg 和环境名称(python 类)。
在 train_cfg 中,设置 experiment_name 和 run_name。
必要时,在 <your_env>.py 中创建环境。继承现有环境,覆盖所需的功能和/或添加自己的奖励功能。
在人形机器人/envs/__init__.py 中注册环境。
根据需要修改或调整 cfg 或 cfg_train 中的其他参数。要移除奖励,请将其比例设为零。避免修改其他环境的参数!

2.6 故障排除

请注意以下情况:

# error
ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory# solution
# set the correct path
export LD_LIBRARY_PATH="~/miniconda3/envs/your_env/lib:$LD_LIBRARY_PATH" # OR
sudo apt install libpython3.8# error
AttributeError: module 'distutils' has no attribute 'version'# solution
# install pytorch 1.12.0
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch# error, results from libstdc++ version distributed with conda differing from the one used on your system to build Isaac Gym
ImportError: /home/roboterax/anaconda3/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.20` not found (required by /home/roboterax/carbgym/python/isaacgym/_bindings/linux64/gym_36.so)# solution
mkdir ${YOUR_CONDA_ENV}/lib/_unused
mv ${YOUR_CONDA_ENV}/lib/libstdc++* ${YOUR_CONDA_ENV}/lib/_unused

2.7 致谢

Humanoid-Gym 的实现依赖于机器人系统实验室(Robotic Systems Lab)创建的 legged_gym 和 rsl_rl 项目的资源。我们特别利用了他们研究中的 LeggedRobot 实现来增强我们的代码库。

2.8 引用

如果您使用本代码或其部分内容,请引用以下内容: 

@software{RobotEra2024Humanoid-Gym,author = {RobotEra},title = {{Humanoid-Gym: Reinforcement Learning for Humanoid Robot with Zero-Shot Sim2Real Transfer}},url = {https://github.com/roboterax/humanoid-gym},year = {2024}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/731308.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[java基础揉碎]super关键字

super关键字: 基本介绍 super代表父类的引用&#xff0c;用于访问父类的属性、方法、构造器 super给编程带来的便利/细节 1.调用父类的构造器的好处(分工明确&#xff0c;父类属性由父类初始化&#xff0c;子类的属性由子类初始化) 2.当子类中有和父类中的成员(属性和方法)重…

软考高级:信息系统生命周期概念和例题

作者&#xff1a;明明如月学长&#xff0c; CSDN 博客专家&#xff0c;大厂高级 Java 工程师&#xff0c;《性能优化方法论》作者、《解锁大厂思维&#xff1a;剖析《阿里巴巴Java开发手册》》、《再学经典&#xff1a;《Effective Java》独家解析》专栏作者。 热门文章推荐&am…

SpringCloudGateway网关限流

文章目录 令牌桶算法原理Gateway中限流实现 网关除了请求路由、身份验证&#xff0c;还有一个非常重要的作用&#xff1a;请求限流。当系统面对高并发请求时&#xff0c;为了减少对业务处理服务的压力&#xff0c;需要在网关中对请求限流&#xff0c;按照一定的速率放行请求。 …

【数据结构】单链表的层层实现!! !

关注小庄 顿顿解馋(●’◡’●) 上篇回顾 我们上篇学习了本质为数组的数据结构—顺序表&#xff0c;顺序表支持下标随机访问而且高速缓存命中率高&#xff0c;然而可能造成空间的浪费&#xff0c;同时增加数据时多次移动会造成效率低下&#xff0c;那有什么解决之法呢&#xff…

VS Code引入ECharts

Charts是一个使用 JavaScript 实现的开源可视化库&#xff0c;涵盖各行业图表&#xff0c;提供了丰富的图表类型和交互能力。&#xff08;摘自菜鸟教程&#xff09; 下面我们来介绍一下VS Code引入ECharts的相关操作 检查电脑是否已经安装了Java语言的软件开发工具包 ECharts…

设计模式-行为型设计模式-命令模式

命令模式&#xff08;Command&#xff09;&#xff0c;将一个请求封装为一个对象&#xff0c;从而使你可用不同的请求对客户进行参数化&#xff1b;对请求排队或记录请求日志&#xff0c;以及支持可撤销的操作。[DP] // 命令接口 interface Command {void execute(); }// 具体命…

备考银行科技岗刷题笔记(持续更新版)

银行考试计算机部分复习 IEEE 802.11的帧格式 1.1 IEEE 802.11是什么&#xff1f; 802.11是国际电工电子工程学会&#xff08;IEEE&#xff09;为无线局域网络制定的标准。目前在802.11的基础上开发出了802.11a、802.11b、802.11g、802.11n、802.11ac。并且为了保证802.11更…

java SSM售后服务管理系统myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

源码特点 java SSM售后服务管理系统是一套完善的web设计系统&#xff08;系统采用SSM框架进行设计开发&#xff0c;springspringMVCmybatis&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代 码和数据库&#xff0c;系统主要采用B/…

Scrapy与分布式开发(2.3):lxml+xpath基本指令和提取方法详解

lxmlxpath基本指令和提取方法详解 一、XPath简介 XPath&#xff0c;全称为XML Path Language&#xff0c;是一种在XML文档中查找信息的语言。它允许用户通过简单的路径表达式在XML文档中进行导航。XPath不仅适用于XML&#xff0c;还常用于处理HTML文档。 二、基本指令和提取…

自编C++题目——几点了 hard ver.

题目难度 普及- 题目描述 一个老外用一口不流利的中文问你&#xff1a;“Xian zai ji dian le?”你看了一眼表&#xff0c;知道了现在是&#xff0c;你准备用这样的形式写在纸上&#xff1a; Now is m past/to h. 如果你看不懂&#xff0c;举个例子&#xff1a; 当h10&…

Rollup Summer:一览 Rollup 生态全景图

作者&#xff1a;Stanley&#xff0c;Kernel Ventures 编译&#xff1a;JIN&#xff0c;Techub News 短短几天内&#xff0c;ZKFair 的总锁定价值&#xff08;TVL&#xff09;已达到 1.2 亿美元&#xff0c;目前稳定在 8000 万美元&#xff0c;使其成为增长最快的 Rollup 之一…

SHARE 100M PRO:航测领域的多面手

在无人机航测领域&#xff0c;SHARE 100M PRO单镜头航测相机以其1.02亿像素的中画幅传感器和创新技术&#xff0c;正在重塑倾斜摄影的精度和效率。这款相机不仅在城市规划和土地管理中发挥着重要作用&#xff0c;还在环境监测、基础设施建设、农业管理等多个航测领域展现出其卓…

sheng的学习笔记-AI-多分类学习:ECOC,softmax

目录&#xff1a;sheng的学习笔记-AI目录-CSDN博客 基本术语&#xff1a; 若我们欲预测的是离散值&#xff0c;例如“好瓜”“坏瓜”&#xff0c;此类学习任务称为“分类”(classification)&#xff1b; 若欲预测的是连续值&#xff0c;例如西瓜成熟度0.95、0.37&#xff0c;…

软考69-上午题-【面向对象技术2-UML】-关系

一、关系 UML中有4种关系&#xff1a; 依赖&#xff1b;关联&#xff1b;泛化&#xff1b;实现。 1-1、依赖 行为&#xff08;参数&#xff09;&#xff0c;参数就是被依赖的事物&#xff0c;即&#xff1a;独立事物。 当独立事物发生变化时&#xff0c;依赖事务行为的语义也…

js【详解】原型 vs 原型链

原型 每个 class 都有显示原型 prototype每个实例都有隐式原型_proto_实例的_proto_指向对应 class 的 prototype 如下范例&#xff1a; class Student 创建了 实例 xialuo 获取属性 xialuo.name 或执行方法 xialuo.sayhi()时&#xff0c;先在自身属性和方法寻找&#xff0…

Visual Studio 2022 Version 17.9 新功能

Visual Studio 2022 v17.9 为广大 C 开发者引入了一系列好用的新功能和改进优化。 内存布局 现在&#xff0c;你可以使用【内存布局&#xff0c;Memory Layout】功能以可视化的方式来查看对象&#xff0c;结构体及联合体的内存布局信息&#xff0c;这可比以前需要手动查看内存…

CleanMyMac X4.15.0专为macOS设计的清理和优化工具

CleanMyMac X 是一款专为 macOS 设计的清理和优化工具。其基本功能和特点主要包括&#xff1a; 系统清理&#xff1a;CleanMyMac X 可以扫描并清除 macOS 系统中的垃圾文件&#xff0c;如缓存、日志、无用的语言文件等&#xff0c;从而释放硬盘空间并提高系统性能。应用程序管…

Tcp标志位 笔记240309

Tcp标志位 TCP&#xff08;传输控制协议&#xff09;的标志位是用于指示TCP报文段中特定控制信息的位字段。这些标志位存在于TCP报头中&#xff0c;用于控制TCP连接的建立、数据传输和终止等过程。以下是TCP标志位的详细说明&#xff1a; SYN&#xff08;同步标志&#xff09;…

python爬虫(3)

上一次的代码结果如下&#xff1a; 当然会有一点点不一样是正常的表现&#xff0c;因为这个图本身使用随机数rand函数做的&#xff0c;用其他两种随机函数出来的结果也不会完全相同。 继上节这次带来的是数组的重塑和转置 1、一维数组的重塑 在NumPy模块中的reshape()函数可…

【Vue+ElementUI】Table表格实现自定义表头展示+表头拖拽排序(附源码)

效果图 因项目采用的是Vue2&#xff0c;所以这个功能目前采用的是Vue2的写法。 Vue3请自行修改扩展代码&#xff1b;或收藏关注帖子&#xff0c;后续Vue3项目如有用到会在本帖子更新修改。 安装vuedraggable&#xff08;拖拽插件&#xff09; cnpm i vuedraggable先说用法&…