TCP三次握手四次挥手

目录

TCP报文 ☞ 标志位

TCP状态变迁图:

三次握手

为什么要三次握手?

客户端与服务端接口状态

客户端:

服务端:

第一次握手:

第二次握手:

第三次握手:

四次挥手:

四次挥手时接口状态:

客户端:

服务端:

第一次挥手:

第二次挥手:

第三次挥手:

第四次挥手:

总结问题:

1.请画出三次握手和四次挥手的示意图。

2.为什么连接的时候是三次握手?

3.什么是半连接队列?

4.ISN(Initial Sequence Number)是固定的吗?

5.三次握手过程中可以携带数据吗?

6.如果第三次握手丢失了,客户端服务端会如何处理?

7.SYN攻击是什么?

8.挥手为什么需要四次?

9.四次挥手释放连接时,等待2MSL的意义?

10.为什么TIME_WAIT状态需要经过2MSL才能返回到CLOSE状态? 


 

TCP报文 ☞ 标志位

标志位共6个,含义如下

SYN:发起一个新连接
FIN:释放一个连接
ACK:确认序号有效,确认接收到消息
URG:紧急指针(urgent pointer)有效。
PSH:接收方应该尽快将这个报文交给应用层。
RST:重置连接。
注意
序号ack和标志位ACK不是一个东西,确认方ack=发起方seq+1,两端配对

TCP状态变迁图:

三次握手

为什么要三次握手?

进行三次握手的主要作用就是为了确认双方的接收能力和发送能力是否正常、指定自己的初始化序列号为后面的可靠性传送做准备。实质上其实就是连接服务器指定端口,建立TCP连接,并同步连接双方的序列号和确认号,交换TCP窗口大小信息。

客户端与服务端接口状态

客户端:

CLOSED: 关闭状态

SYN_SENT:请求连接

ESTABLISHED:建立连接

服务端:

CLOSED:关闭状态

LISTENING:FTP服务启动后进入监听状态

SYN_RCVD:(非常短暂)当服务端接收到客户端的信号时,将ACKSYN置于1后发送给客户端,此时置于SYN_RCVD状态

ESTABLISHED:当服务端与客户端同步信号后(SYN_RCVD)进入连接状态

第一次握手:

客户端给服务端发一个 SYN 报文,并指明客户端的初始化序列号 ISN。此时客户端处于SYN_SENT 状态。首部的同步位SYN=1,初始序号seq=x,SYN=1的报文段不能携带数据,但要消耗掉一个序号。

第二次握手:

服务器收到客户端的 SYN 报文之后,会以自己的 SYN 报文作为应答,并且也是指定了自己的初始化序列号 ISN(s)。同时会把客户端的 ISN + 1 作为ACK 的值,表示自己已经收到了客户端的 SYN,此时服务器处于 SYN_RCVD 的状态。在确认报文段中SYN=1,ACK=1,确认号ack=x+1,初始序号seq=y。

第三次握手:

客户端收到 SYN 报文之后,会发送一个 ACK 报文,当然,也是一样把服务器的 ISN + 1 作为 ACK 的值,表示已经收到了服务端的 SYN 报文,此时客户端处于 ESTABLISHED 状态。服务器收到 ACK 报文之后,也处于 ESTABLISHED 状态,此时,双方已建立起了连接。确认报文段ACK=1,确认号ack=y+1,序号seq=x+1(初始为seq=x,第二个报文段所以要+1),ACK报文段可以携带数据,不携带数据则不消耗序号。

四次挥手:

建立一个连接需要三次握手,而终止一个连接要经过四次挥手(也有将四次挥手叫做四次握手的)。这由TCP的半关闭(half-close)造成的。所谓的半关闭,其实就是TCP提供了连接的一端在结束它的发送后还能接收来自另一端数据的能力

四次挥手时接口状态:

客户端:

FIN_WAIT1:非常短暂

FIN_WAIT2:非常短暂

TIME_WAIT:持续2MSL

客户端主动调用close()断开连接,收到对方确认后状态变为TIME_WAIT
TCP协议规定TIME_WAIT状态会一直持续2MSL(即两倍的分段最大生存期),以此来确保旧的连接状态不会对新连接产生影响。处于TIME_WAIT状态的连接占用的资源不会被内核释放,所以作为服务器,在可能的情况下,尽量不要主动断开连接,以减少TIME_WAIT状态造成的资源浪费。

服务端:

CLOSE_WAIT:此状态是为了等客户端所有的报文都发送完

LAST_ACK:最后确认状态

刚开始双方都处于ESTABLISHED 状态,假如是客户端先发起关闭请求。四次挥手的过程如下

第一次挥手:

客户端发送一个 FIN 报文,报文中会指定一个序列号。此时客户端处于FIN_WAIT1状态。
*即发出连接释放报文段(FIN=1,序号seq=u),并停止再发送数据,主动关闭TCP连接,进入FIN_WAIT1(终止等待1)状态,等待服务端的确认

第二次挥手:

服务端收到 FIN 之后,会发送 ACK 报文,且把客户端的序列号值 +1 作为 ACK 报文的序列号值,表明已经收到客户端的报文了,此时服务端处于 CLOSE_WAIT 状态。
*即服务端收到连接释放报文段后即发出确认报文段(ACK=1,确认号ack=u+1,序号seq=v),服务端进入CLOSE_WAIT(关闭等待)状态,此时的TCP处于半关闭状态,客户端到服务端的连接释放。客户端收到服务端的确认后,进入FIN_WAIT2(终止等待2)状态,等待服务端发出的连接释放报文段。

第三次挥手:

如果服务端也想断开连接了,和客户端的第一次挥手一样,发给 FIN 报文,且指定一个序列号。此时服务端处于 LAST_ACK 的状态。
*即服务端没有要向客户端发出的数据,服务端发出连接释放报文段(FIN=1,ACK=1,序号seq=w,确认号ack=u+1),服务端进入LAST_ACK(最后确认)状态,等待客户端的确认。

第四次挥手:

客户端收到 FIN 之后,一样发送一个 ACK 报文作为应答,且把服务端的序列号值 +1 作为自己 ACK 报文的序列号值,此时客户端处于 TIME_WAIT 状态。需要过一阵子以确保服务端收到自己的 ACK 报文之后才会进入 CLOSED 状态,服务端收到 ACK 报文之后,就处于关闭连接了,处于 CLOSED 状态。
*即客户端收到服务端的连接释放报文段后,对此发出确认报文段(ACK=1,seq=u+1,ack=w+1),客户端进入TIME_WAIT(时间等待)状态。此时TCP未释放掉,需要经过时间等待计时器设置的时间2MSL后,客户端才进入CLOSED状态。

总结问题:

1.请画出三次握手和四次挥手的示意图。


2.为什么连接的时候是三次握手?

如客户端发出连接请求,但因连接请求报文丢失而未收到确认,于是客户端再重传一次连接请求。后来收到了确认,建立了连接。数据传输完毕后,就释放了连接,客户端共发出了两个连接请求报文段,其中第一个丢失,第二个到达了服务端,但是第一个丢失的报文段只是在某些网络结点长时间滞留了,延误到连接释放以后的某个时间才到达服务端,此时服务端误认为客户端又发出一次新的连接请求,于是就向客户端发出确认报文段,同意建立连接,不采用三次握手,只要服务端发出确认,就建立新的连接了,此时客户端忽略服务端发来的确认,也不发送数据,则服务端一致等待客户端发送数据,浪费资源。

3.什么是半连接队列?

服务器第一次收到客户端的 SYN 之后,就会处于 SYN_RCVD 状态,此时双方还没有完全建立其连接,服务器会把此种状态下请求连接放在一个队列里,我们把这种队列称之为半连接队列。

当然还有一个全连接队列,就是已经完成三次握手,建立起连接的就会放在全连接队列中。如果队列满了就有可能会出现丢包现象。

这里在补充一点关于SYN-ACK 重传次数的问题:
服务器发送完SYN-ACK包,如果未收到客户确认包,服务器进行首次重传,等待一段时间仍未收到客户确认包,进行第二次重传。如果重传次数超过系统规定的最大重传次数,系统将该连接信息从半连接队列中删除。
注意,每次重传等待的时间不一定相同,一般会是指数增长,例如间隔时间为 1s,2s,4s,8s…


4.ISN(Initial Sequence Number)是固定的吗?

当一端为建立连接而发送它的SYN时,它为连接选择一个初始序号。ISN随时间而变化,因此每个连接都将具有不同的ISN。ISN可以看作是一个32比特的计数器,每4ms加1 。这样选择序号的目的在于防止在网络中被延迟的分组在以后又被传送,而导致某个连接的一方对它做错误的解释。


5.三次握手过程中可以携带数据吗?

其实第三次握手的时候,是可以携带数据的。但是,第一次、第二次握手不可以携带数据

为什么这样呢?大家可以想一个问题,假如第一次握手可以携带数据的话,如果有人要恶意攻击服务器,那他每次都在第一次握手中的 SYN 报文中放入大量的数据。因为攻击者根本就不理服务器的接收、发送能力是否正常,然后疯狂着重复发 SYN 报文的话,这会让服务器花费很多时间、内存空间来接收这些报文。

也就是说,第一次握手不可以放数据,其中一个简单的原因就是会让服务器更加容易受到攻击了。而对于第三次的话,此时客户端已经处于 ESTABLISHED 状态。对于客户端来说,他已经建立起连接了,并且也已经知道服务器的接收、发送能力是正常的了,所以能携带数据也没啥毛病。


6.如果第三次握手丢失了,客户端服务端会如何处理?

服务端:此时是SYN-RECV状态,触发超时重传机制,会等待3s,6s,12s后重新发送SYN+ACK包,以便客户端重新发送ACK包。而服务器重发包的次数,可以通过设置改变,默认为5。重发指定次数后,仍未收到客户端的ACK,服务端则关闭。
    客户端:此时是ESTABLISHED状态,之后向服务端发送数据,服务端将以RST包(reset位置1)响应,客户端才能感知到服务端的错误。

  1. FIN_RCVD(FIN Received)状态是指TCP连接接收到了对方发送的FIN(Finish)报文段,表示对方要关闭连接。在这个状态下,TCP连接处于半关闭状态,即本端可以发送数据,但不能再接收数据。

  2. FIN_RECV(FIN Received and Acknowledged)状态是指TCP连接接收到对方发送的FIN报文段,并且已经发送了确认(ACK)报文段给对方,表示对方的关闭请求已经被确认。在这个状态下,TCP连接处于关闭等待状态,即本端已经关闭了发送数据的能力,但仍然可以接收对方发送的数据


7.SYN攻击是什么?

服务器端的资源分配是在二次握手时分配的,而客户端的资源是在完成三次握手时分配的,所以服务器容易受到SYN洪泛攻击。SYN攻击就是Client在短时间内伪造大量不存在的IP地址,并向Server不断地发送SYN包,Server则回复确认包,并等待Client确认,由于源地址不存在,因此Server需要不断重发直至超时,这些伪造的SYN包将长时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而引起网络拥塞甚至系统瘫痪。SYN 攻击是一种典型的 DoS/DDoS 攻击。

检测 SYN 攻击非常的方便,当你在服务器上看到大量的半连接状态时,特别是源IP地址是随机的,基本上可以断定这是一次SYN攻击。在 Linux/Unix 上可以使用系统自带的 netstat 命令来检测 SYN 攻击。

netstat -n -p TCP | grep SYN_RECV


常见的防御 SYN 攻击的方法有如下几种:

缩短超时(SYN Timeout)时间
增加最大半连接数
过滤网关防护
SYN cookies技术


8.挥手为什么需要四次?

因为当服务端收到客户端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当服务端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉客户端,“你发的FIN报文我收到了”。只有等到我服务端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四次挥手。


9.四次挥手释放连接时,等待2MSL的意义?

MSL是Maximum Segment Lifetime的英文缩写,可译为“最长报文段寿命”,它是任何报文在网络上存在的最长时间,超过这个时间报文将被丢弃。

为了保证客户端发送的最后一个ACK报文段能够到达服务器。因为这个ACK有可能丢失,从而导致处在LAST-ACK状态的服务器收不到对FIN-ACK的确认报文。服务器会超时重传这个FIN-ACK,接着客户端再重传一次确认,重新启动时间等待计时器。最后客户端和服务器都能正常的关闭。假设客户端不等待2MSL,而是在发送完ACK之后直接释放关闭,一但这个ACK丢失的话,服务器就无法正常的进入关闭连接状态。


保证客户端发送的最后一个ACK报文段能够到达服务端。

这个ACK报文段有可能丢失,使得处于LAST-ACK状态的B收不到对已发送的FIN+ACK报文段的确认,服务端超时重传FIN+ACK报文段,而客户端能在2MSL时间内收到这个重传的FIN+ACK报文段,接着客户端重传一次确认,重新启动2MSL计时器,最后客户端和服务端都进入到CLOSED状态,若客户端在TIME-WAIT状态不等待一段时间,而是发送完ACK报文段后立即释放连接,则无法收到服务端重传的FIN+ACK报文段,所以不会再发送一次确认报文段,则服务端无法正常进入到CLOSED状态。

10.为什么TIME_WAIT状态需要经过2MSL才能返回到CLOSE状态? 

理论上,四个报文都发送完毕,就可以直接进入CLOSE状态了,但是可能网络是不可靠的,有可能最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。

防止“已失效的连接请求报文段”出现在本连接中

客户端在发送完最后一个ACK报文段后,再经过2MSL,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失,使下一个新的连接中不会出现这种旧的连接请求报文段。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/728399.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

火爆全网,软件测试数据库常用 SQL 语句总结,你要的我都有......

前言 直接上干货 数据定义语言(DDL) 主要负责数据库、数据表、视图、键、索引等结构化的操作 常用的语句有:CREATE DATABASE、CREATE TABLE、ALTER TABLE等 字段的常用约束有:PRIMARY KEY、FOREIGN KEY、NOT NULL、UNIQUE、AUTO_INCREMENT、DEFAULT 常…

onnx模型优化利器onnxoptimizer、onnxsim

ONNX性能优化和调试技巧 - 知乎ONNX模型是一种跨平台、跨框架的模型表示格式,允许用户在不同的深度学习框架之间共享模型和数据,从而加速模型开发和部署。然而,在实际应用中,我们通常需要对ONNX模型进行性能优化和调试,以确保其在不同硬件和…https://zhuanlan.zhihu.com/…

PTA L2-011 玩转二叉树

给定一棵二叉树的中序遍历和前序遍历,请你先将树做个镜面反转,再输出反转后的层序遍历的序列。所谓镜面反转,是指将所有非叶结点的左右孩子对换。这里假设键值都是互不相等的正整数。 输入格式: 输入第一行给出一个正整数N&…

CIP通讯介绍(欧姆龙PLC)

什么是CIP CIP通信是Common Industrial Protocl(CIP)的简称,它是一个点到点的面向对象协议,能够实现工业器件(传感器,执行器)之间的连接,和高等级的控制器之间的连接。目前,有3种网络DeviceNet…

MySQL--优化(索引--索引创建原则)

MySQL–优化(索引–索引创建原则) 定位慢查询SQL执行计划索引 存储引擎索引底层数据结构聚簇和非聚簇索引索引创建原则索引失效场景 SQL优化经验 一、索引创建原则 我们使用的索引种类: 主键索引唯一索引根据业务创建的索引(复…

怎么给视频活码加入时间设置?限时扫码看视频的制作方法

视频二维码是常见的一种二维码类型,很多人会通过这种方式来分享视频内容,可能某些情况下需要对制作的二维码图片加入扫码限制,比如有效期、填写密码、限制预览时间等设置,那么这些需求怎么在生成二维码时实现呢? 对于…

JAVA 用二分法查找数组中是否存在某个值

二分法查找的概念 二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。首先,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成…

spring-security 项目实战(一)个人健康档案

spring-security 项目实战(一)个人健康档案 项目说明项目地址框架信息 代码分析配置类解析默认登录页登录接口执行逻辑登录认证成功之后重定向到main页面过程未登录之前访问 /main生成默认登录页点击登录 登录之后访问 /main执行流程清空认证信息 项目来…

低空经济20人|卓翼智能任雪峰:以技术驱动市场,引领无人机细分领域创新

作为国内系留无人机领域的领头羊企业,卓翼智能致力于提供智能无人系统解决方案。本期“低空经济20人”请到卓翼智能CEO任雪峰分享他对系留无人机研发应用的经验以及未来无人机行业生态发展的观点。 如今,无人机的应用场景逐渐广泛,在社会发展…

18个惊艳的可视化大屏(第20辑):物联网场景

实时监控和管理 物联网系统通常涉及大量的传感器、设备和数据,通过将这些数据可视化展示在大屏上,可以实时监控和管理物联网系统的运行状态。这有助于及时发现问题、快速响应,并提高系统的可靠性和稳定性。 数据分析和决策支持 可视化大屏可…

软件测试--性能测试实战篇

软件测试--性能测试实战篇 项目介绍和部署1. 轻商城项目介绍1.1 背景1.2 简介2. 项目功能架构3. 项目技术架构4. 熟悉数据库设计5. 轻商城项目搭建5.1 准备工作5.2 项目搭建步骤性能测试需求分析1. 性能测试需求分析1.1 如何获取有效的需求2. 性能测试点的提取2.1 性能测试点的…

第五十二回 戴宗二取公孙胜 李逵独劈罗真人-飞桨AI框架安装和使用示例

吴用说只有公孙胜可以破法术,于是宋江请戴宗和李逵去蓟州。两人听说公孙胜的师傅罗真人在九宫县二仙山讲经,于是到了二仙山,并在山下找到了公孙胜的家。 两人请公孙胜去帮助打高唐州,公孙胜说听师傅的。罗真人说出家人不管闲事&a…

SpringMVC 中的常用注解和用法

⭐ 作者:小胡_不糊涂 🌱 作者主页:小胡_不糊涂的个人主页 📀 收录专栏:JavaEE 💖 持续更文,关注博主少走弯路,谢谢大家支持 💖 注解 1. MVC定义2. 注解2.1 RequestMappin…

leetcode:LCR 006. 两数之和 II - 输入有序数组(python3解法)

难度&#xff1a;简单 给定一个已按照 升序排列 的整数数组 numbers &#xff0c;请你从数组中找出两个数满足相加之和等于目标数 target 。 函数应该以长度为 2 的整数数组的形式返回这两个数的下标值。numbers 的下标 从 0 开始计数 &#xff0c;所以答案数组应当满足 0 <…

el-dialog封装组件

父页面 <template><div><el-button type"primary" click"visible true">展示弹窗</el-button><!-- 弹窗组件 --><PlayVideo v-if"visible" :visible.syncvisible /></div> </template><sc…

谷粒学院--在线教育实战项目【一】

谷粒学院--在线教育实战项目【一】 一、项目概述1.1.项目来源1.2.功能简介1.3.技术架构 二、Mybatis-Plus概述2.1.简介2.2.特性 三、Mybatis-Plus入门3.1.创建数据库3.2.创建 User 表3.3.初始化一个SpringBoot工程3.4.在Pom文件中引入SpringBoot和Mybatis-Plus相关依赖3.5.第一…

融资项目——OpenFeign的降级与熔断

当一个微服务调用其他微服务时&#xff0c;如果被调用的微服务因各种原因无法在规定时间内提供服务&#xff0c;则可以直接使用本地的服务作为备选&#xff0c;即进行降级熔断。 如之前所提到的微服务为例&#xff1a; 如果希望实现降级熔断&#xff0c;可以在本地创建一个实现…

AI改变游戏规则:内容创作的新时代!

AI技术&#xff0c;尤其是人工智能&#xff08;AI&#xff09;在内容创作领域的应用&#xff0c;正开启了一个全新的时代。这一时代的核心在于利用AI的能力&#xff0c;不仅提高内容创作的效率&#xff0c;还能引入前所未有的创新元素&#xff0c;从而彻底改变游戏规则。 AI在…

OpenCV与AI深度学习 | 基于OpenCV实现模糊检测 / 自动对焦

本文来源公众号“OpenCV与AI深度学习”&#xff0c;仅用于学术分享&#xff0c;侵权删&#xff0c;干货满满。 原文链接&#xff1a;基于OpenCV实现模糊检测 / 自动对焦 导 读 本文主要介绍使用OpenCV实现图像模糊检测/相机自动对焦功能。 前 言 为了检测图片是否对焦&…

coqui-ai/TTS 案例model文件

GitHub - coqui-ai/TTS: &#x1f438;&#x1f4ac; - a deep learning toolkit for Text-to-Speech, battle-tested in research and production Coqui AI的TTS是一款开源深度学习文本转语音工具&#xff0c;以高质量、多语言合成著称。它提供超过1100种语言的预训练模型库&…