(黑马出品_04)SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式
- = = = = = = = = = = = = = = = 微服务技术异步通信 = = = = = = = = = = = = = = =
- 今日目标
- 1.初识MQ
- 1.1.同步和异步通讯
- 1.1.1.同步通讯
- 1.1.2.异步通讯
- 1.2.技术对比
- 2.快速入门
- 2.1.安装RabbitMQ
- 2.1.1.单机部署
- (1).下载镜像
- 方式一:在线拉取
- 方式二:从本地加载
- (2).安装MQ
- 2.1.2.集群部署
- (1).集群分类
- (2).设置网络
- 2.2.RabbitMQ消息模型
- 2.3.导入Demo工程
- 2.4.入门案例
- 2.4.1.publisher实现
- 2.4.2.consumer实现
- 2.5.总结
- 3.SpringAMQP
- 3.1.Basic Queue 简单队列模型
- 3.1.1.消息发送
- 3.1.2.消息接收
- 3.1.3.测试
- 3.2.WorkQueue
- 3.2.1.消息发送
- 3.2.2.消息接收
- 3.2.3.测试
- 3.2.4.能者多劳
- 3.2.5.总结
- 3.3.发布/订阅
- 3.4.Fanout
- 3.4.1.声明队列和交换机
- 3.4.2.消息发送
- 3.4.3.消息接收
- 3.4.4.总结
- 3.5.Direct
- 3.5.1.基于注解声明队列和交换机
- 3.5.2.消息发送
- 3.5.3.总结
- 3.6.Topic
- 3.6.1.说明
- 3.6.2.消息发送
- 3.6.3.消息接收
- 3.6.4.总结
- 3.7.消息转换器
- 3.7.1.测试默认转换器
- 3.7.2.配置JSON转换器
此文档是在心向阳光的天域的博客加了一些有助于自己的知识体系,也欢迎大家关注这个大佬的博客
是这个视频
= = = = = = = = = = = = = = = 微服务技术异步通信 = = = = = = = = = = = = = = =
今日目标
1.初识MQ
1.1.同步和异步通讯
微服务间通讯有同步和异步两种方式:
- 同步通讯:就像打电话,需要实时响应。
- 异步通讯:就像发邮件,不需要马上回复。
两种方式各有优劣,打电话可以立即得到响应,但是你却不能跟多个人同时通话。发送邮件可以同时与多个人收发邮件,但是往往响应会有延迟。
1.1.1.同步通讯
我们之前学习的Feign调用就属于同步方式,虽然调用可以实时得到结果,但存在下面的问题:
同步调用的优点:
- 时效性较强,可以立即得到结果
同步调用的问题:
-
耦合度高 ,每次加入新的需求,都要修改原来的代码
-
性能和吞吐能力下降 ,调用者需要等待服务提供者响应,如果调用链过长则响应时间等于每次调用的时间之和。
-
有额外的资源消耗 ,调用链中的每个服务在等待响应过程中,不能释放请求占用的资源,高并发场景下会极度浪费系统资源
-
有级联失败问题,如果服务提供者出现问题,所有调用方都会跟着出问题,如同多米诺骨牌一样,迅速导致整个微服务群故障
1.1.2.异步通讯
异步调用则可以避免上述问题:
我们以购买商品为例,用户支付后需要调用订单服务完成订单状态修改,调用物流服务,从仓库分配响应的库存并准备发货。
在事件模式中,支付服务是事件发布者(publisher),在支付完成后只需要发布一个支付成功的事件(event),事件中带上订单id。
订单服务和物流服务是事件订阅者(Consumer),订阅支付成功的事件,监听到事件后完成自己业务即可。
为了解除事件发布者与订阅者之间的耦合,两者并不是直接通信,而是有一个中间人(Broker)。发布者发布事件到Broker,不关心谁来订阅事件。订阅者从Broker订阅事件,不关心谁发来的消息。
Broker 是一个像数据总线一样的东西,所有的服务要接收数据和发送数据都发到这个总线上,这个总线就像协议一样,让服务间的通讯变得标准和可控。
好处:
- 吞吐量提升:无需等待订阅者处理完成,响应更快速
- 故障隔离:服务没有直接调用,不存在级联失败问题
- 调用间没有阻塞,不会造成无效的资源占用
- 耦合度极低,每个服务都可以灵活插拔,可替换
- 流量削峰:不管发布事件的流量波动多大,都由Broker接收,订阅者可以按照自己的速度去处理事件
缺点:
- 架构复杂了,业务没有明显的流程线,不好管理
- 需要依赖于Broker的可靠、安全、性能
好在现在开源软件或云平台上 Broker 的软件是非常成熟的,比较常见的一种就是我们今天要学习的MQ技术。
1.2.技术对比
MQ,中文是消息队列(MessageQueue),字面来看就是存放消息的队列。也就是事件驱动架构中的Broker。
比较常见的MQ实现:
- ActiveMQ
- RabbitMQ
- RocketMQ
- Kafka
几种常见MQ的对比:
RabbitMQ | ActiveMQ | RocketMQ | Kafka | |
---|---|---|---|---|
公司/社区 | Rabbit | Apache | 阿里 | Apache |
开发语言 | Erlang | Java | Java | Scala&Java |
协议支持 | AMQP,XMPP,SMTP,STOMP | OpenWire,STOMP,REST,XMPP,AMQP | 自定义协议 | 自定义协议 |
可用性 | 高 | 一般 | 高 | 高 |
单机吞吐量 | 一般 | 差 | 高 | 非常高 |
消息延迟 | 微秒级 | 毫秒级 | 毫秒级 | 毫秒以内 |
消息可靠性 | 高 | 一般 | 高 | 一般 |
追求可用性:Kafka、 RocketMQ 、RabbitMQ
追求可靠性:RabbitMQ、RocketMQ
追求吞吐能力:RocketMQ、Kafka
追求消息低延迟:RabbitMQ、Kafka
2.快速入门
2.1.安装RabbitMQ
RabbitMQ是基于Erlang语言开发的开源消息通信中间件,官网地址: RabbitMQ官网
安装RabbitMQ,参考课前资料:
MQ的基本结构:
RabbitMQ中的一些角色:
- publisher:生产者
- consumer:消费者
- exchange:交换机,负责消息路由
- queue:队列,存储消息
- virtualHost:虚拟主机,隔离不同租户的exchange、queue、消息的隔离
RabbitMQ中的几个概念:
- channel: 操作MQ的工具
- exchange:路由消息到队列中
- queue:缓存消息
- virtual host: 虚拟主机,是对queue、exchange等资源的逻辑分组。
2.1.1.单机部署
我们在Centos7虚拟机中使用Docker来安装。
(1).下载镜像
方式一:在线拉取
docker pull rabbitmq:3-management
方式二:从本地加载
在课前资料已经提供了镜像包:
将课前资料移动到虚拟机的 /tmp目录下
mv mq.tar /tmp
上传到虚拟机中后,使用命令加载镜像即可:
docker load -i mq.tar
查看镜像
docker images
(2).安装MQ
执行下面的命令来运行MQ容器:
15672是管理平台的端口号
5672是做消息命令建立连接的端口
docker run \-e RABBITMQ_DEFAULT_USER=itcast \-e RABBITMQ_DEFAULT_PASS=123321 \--name mq \--hostname mq1 \-p 15672:15672 \-p 5672:5672 \-d \rabbitmq:3-management
通过以下命令查看
docker ps
然后我们访问地址
ip地址:15672即可
http://192.168.150.101:15672/
登陆后界面如下:
用户名:itcast
密码:123321
登陆后可以看到Overview总览
Connections连接
Channels通道
Exchange交换机
Queue队列
Admin管理
添加用户
添加虚拟主机
通常情况下,一个用户对应一个虚拟主机。
比如这里我配置了2个用户,分别对应不同的虚拟主机地址
2.1.2.集群部署
接下来,我们看看如何安装RabbitMQ的集群。
(1).集群分类
在RabbitMQ的官方文档中,讲述了两种集群的配置方式:
-
普通模式:普通模式集群不进行数据同步,每个MQ都有自己的队列、数据信息(其它元数据信息如交换机等会同步)。例如我们有2个MQ:mq1,和mq2,如果你的消息在mq1,而你连接到了mq2,那么mq2会去mq1拉取消息,然后返回给你。如果mq1宕机,消息就会丢失。
-
镜像模式:与普通模式不同,队列会在各个mq的镜像节点之间同步,因此你连接到任何一个镜像节点,均可获取到消息。而且如果一个节点宕机,并不会导致数据丢失。不过,这种方式增加了数据同步的带宽消耗。
我们先来看普通模式集群。
(2).设置网络
首先,我们需要让3台MQ互相知道对方的存在。
分别在3台机器中,设置 /etc/hosts文件,添加如下内容:
192.168.150.101 mq1
192.168.150.102 mq2
192.168.150.103 mq3
并在每台机器上测试,是否可以ping通对方:
2.2.RabbitMQ消息模型
2.3.导入Demo工程
课前资料提供了一个Demo工程,mq-demo:
导入后可以看到结构如下:
包括三部分:
- mq-demo:父工程,管理项目依赖
- publisher:消息的发送者
- consumer:消息的消费者
2.4.入门案例
简单队列模式的模型图:
官方的HelloWorld是基于最基础的消息队列模型来实现的,只包括三个角色:
- publisher:消息发布者,将消息发送到队列queue
- queue:消息队列,负责接受并缓存消息
- consumer:订阅队列,处理队列中的消息
这里我们用单元测试的方式来测试,选择run maven中的test先让maven加载一下
然后我们debug
2.4.1.publisher实现
思路:
- 建立连接
- 创建Channel
- 声明队列
- 发送消息
- 关闭连接和channel
代码实现:
package cn.itcast.mq.helloworld;import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import org.junit.Test;import java.io.IOException;
import java.util.concurrent.TimeoutException;public class PublisherTest {@Testpublic void testSendMessage() throws IOException, TimeoutException {// 1.建立连接ConnectionFactory factory = new ConnectionFactory();// 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码factory.setHost("192.168.150.101");factory.setPort(5672);factory.setVirtualHost("/");factory.setUsername("itcast");factory.setPassword("123321");// 1.2.建立连接Connection connection = factory.newConnection();// 2.创建通道ChannelChannel channel = connection.createChannel();// 3.创建队列String queueName = "simple.queue";channel.queueDeclare(queueName, false, false, false, null);// 4.发送消息String message = "hello, rabbitmq!";channel.basicPublish("", queueName, null, message.getBytes());System.out.println("发送消息成功:【" + message + "】");// 5.关闭通道和连接channel.close();connection.close();}
}
debug到该行,便创建了连接
创建了通道
创建了队列
全部运行完查看消息
2.4.2.consumer实现
代码思路:
- 建立连接
- 创建Channel
- 声明队列
- 订阅消息
代码实现:
package cn.itcast.mq.helloworld;import com.rabbitmq.client.*;import java.io.IOException;
import java.util.concurrent.TimeoutException;public class ConsumerTest {public static void main(String[] args) throws IOException, TimeoutException {// 1.建立连接ConnectionFactory factory = new ConnectionFactory();// 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码factory.setHost("192.168.150.101");factory.setPort(5672);factory.setVirtualHost("/");factory.setUsername("itcast");factory.setPassword("123321");// 1.2.建立连接Connection connection = factory.newConnection();// 2.创建通道ChannelChannel channel = connection.createChannel();// 3.创建队列String queueName = "simple.queue";channel.queueDeclare(queueName, false, false, false, null);// 4.订阅消息channel.basicConsume(queueName, true, new DefaultConsumer(channel){@Overridepublic void handleDelivery(String consumerTag, Envelope envelope,AMQP.BasicProperties properties, byte[] body) throws IOException {// 5.处理消息String message = new String(body);System.out.println("接收到消息:【" + message + "】");}});System.out.println("等待接收消息。。。。");}
}
debug到这一行建立了连接
debug到这一行创建了通道
debug到这一行还是之前的队列
原因在于,不知道消息的发送方和接收方,哪个先启动服务,于是两边都声明
匿名内部类相当于是一个回调函数的机制,先进行下面的打印代码,最后再回调
一旦消费者接收到消息,消息就没了,叫“阅后即焚”
2.5.总结
基本消息队列的消息发送流程:
-
建立connection
-
创建channel
-
利用channel声明队列
-
利用channel向队列发送消息
基本消息队列的消息接收流程:
-
建立connection
-
创建channel
-
利用channel声明队列
-
定义consumer的消费行为handleDelivery()
-
利用channel将消费者与队列绑定
3.SpringAMQP
SpringAMQP是基于RabbitMQ封装的一套模板,并且还利用SpringBoot对其实现了自动装配,使用起来非常方便。
SpringAmqp的官方地址:SpringAmqp官方地址
SpringAMQP提供了三个功能:
- 自动声明队列、交换机及其绑定关系
- 基于注解的监听器模式,异步接收消息
- 封装了RabbitTemplate工具,用于发送消息
3.1.Basic Queue 简单队列模型
步骤一:引入AMQP依赖
因为publisher和consumer服务都需要amqp依赖,因此这里把依赖直接放到父工程mq-demo中:
在父工程mq-demo中引入依赖
<!--AMQP依赖,包含RabbitMQ-->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId>
</dependency>
3.1.1.消息发送
步骤二:在publisher中编写测试方法,向simple.queue发送消息
首先配置MQ地址,在publisher服务的application.yml中添加配置:
spring:rabbitmq:host: 192.168.150.101 # 主机名port: 5672 # 端口virtual-host: / # 虚拟主机username: itcast # 用户名password: 123321 # 密码
然后在publisher服务中编写测试类SpringAmqpTest,并利用RabbitTemplate实现消息发送:
package cn.itcast.mq.spring;import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringAmqpTest {@Autowiredprivate RabbitTemplate rabbitTemplate;@Testpublic void testSimpleQueue() {// 队列名称String queueName = "simple.queue";// 消息String message = "hello, spring amqp!";// 发送消息rabbitTemplate.convertAndSend(queueName, message);}
}
运行单元测试
去rabbitmq的管理平台中查看,发现发送成功
3.1.2.消息接收
首先配置MQ地址,在consumer服务的application.yml中添加配置:
spring:rabbitmq:host: 192.168.150.101 # 主机名port: 5672 # 端口virtual-host: / # 虚拟主机username: itcast # 用户名password: 123321 # 密码
然后在consumer服务的cn.itcast.mq.listener
包中新建一个类SpringRabbitListener,代码如下:
package cn.itcast.mq.listener;import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Component;@Component
public class SpringRabbitListener {@RabbitListener(queues = "simple.queue")public void listenSimpleQueueMessage(String msg) throws InterruptedException {System.out.println("spring 消费者接收到消息:【" + msg + "】");}
}
注意新加的监听类要放在itcast的子包下
控制台都接收到了
去rabbitmq的管理平台看一下
注意这种方式,消息队列需要在管理平台提前指定名称,然后传输的时候,设置队列名称为创建的队列名称即可。如果队列名不存在,则不会新产生一条队列。
注意:消息一旦消费,就会从队列删除RabbitMQ没有消息回溯功能
3.1.3.测试
启动consumer服务,然后在publisher服务中运行测试代码,发送MQ消息
3.2.WorkQueue
Work queues,也被称为(Task queues),任务模型。简单来说就是让多个消费者绑定到一个队列,共同消费队列中的消息。
相当于consumer1和consumer2可以共同处理queue中的消息
当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。
此时就可以使用work 模型,多个消费者共同处理消息处理,速度就能大大提高了。
案例:
模拟WorkQueue,实现一个队列绑定多个消费者
基本思路如下:
- 在publisher服务 中定义测试方法,每秒产生50条消息,发送到simple.queue
- 在consumer服务中定 义两个消息监听者,都监听simple.queue队列
- 消费者1每秒处理50条消息, 消费者2每秒处理10条消息
3.2.1.消息发送
这次我们循环发送,模拟大量消息堆积现象。
在publisher服务中的SpringAmqpTest类中添加一个测试方法:
/*** workQueue* 向队列中不停发送消息,模拟消息堆积。*/
@Test
public void testWorkQueue() throws InterruptedException {// 队列名称String queueName = "simple.queue";// 消息String message = "hello, message_";for (int i = 0; i < 50; i++) {// 发送消息rabbitTemplate.convertAndSend(queueName, message + i);Thread.sleep(20);}
}
3.2.2.消息接收
要模拟多个消费者绑定同一个队列,我们在consumer服务的SpringRabbitListener中添加2个新的方法:
@RabbitListener(queues = "simple.queue")
public void listenWorkQueue1(String msg) throws InterruptedException {System.out.println("消费者1接收到消息:【" + msg + "】" + LocalTime.now());Thread.sleep(20);
}@RabbitListener(queues = "simple.queue")
public void listenWorkQueue2(String msg) throws InterruptedException {System.err.println("消费者2........接收到消息:【" + msg + "】" + LocalTime.now());Thread.sleep(200);
}
注意到这个消费者sleep了1000秒,模拟任务耗时。
3.2.3.测试
启动ConsumerApplication后,在执行publisher服务中刚刚编写的发送测试方法testWorkQueue。
可以看到消费者1很快完成了自己的25条消息。消费者2却在缓慢的处理自己的25条消息。
也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。这样显然是有问题的。
可以看到偶数消息都被消费者1接收了,奇数消息被消费者2接收了。
3.2.4.能者多劳
prefetch:消息预取的上限。
在spring中有一个简单的配置,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置:
spring:rabbitmq:listener:simple:prefetch: 1 # 每次只能获取一条消息,处理完成才能获取下一个消息
重启看一下设置后的结果,基本1秒就处理完了,而且是能者多劳的效果。
3.2.5.总结
Work模型的使用:
- 多个消费者绑定到一个队列,同一条消息只会被一个消费者处理
- 通过设置prefetch来控制消费者预取的消息数量
3.3.发布/订阅
发布订阅的模型如图:
可以看到,在订阅模型中,多了一个exchange
(交换机)角色,而且过程略有变化:
-
Publisher
:生产者,也就是要发送消息的程序,但是不再发送到队列中,而是发给exchange
(交换机) -
Exchange
:交换机,图中的exchange
。一方面,接收生产者发送的消息。另一方面,知道如何处理消息,例如递交给某个特别队列、递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange
的类型。Exchange有以下3种类型:Fanout
:广播,将消息交给所有绑定到交换机的队列Direct
:路由定向,把消息交给符合指定routing key 的队列Topic
:通配符,把消息交给符合routing pattern(路由模式) 的队列
-
Consumer
:消费者,与以前一样,订阅队列,没有变化 -
Queue
:消息队列也与以前一样,接收消息、缓存消息。
Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与Exchange绑定,或者没有符合路由规则的队列,那么消息会丢失!
3.4.Fanout
Fanout,英文翻译是扇出,我觉得在MQ中叫广播更合适。
在广播模式下,消息发送流程是这样的:
- 1) 可以有多个队列
- 2) 每个队列都要绑定到Exchange(交换机)
- 3) 生产者发送的消息,只能发送到交换机,交换机来决定要发给哪个队列,生产者无法决定
- 4) 交换机把消息发送给绑定过的所有队列
- 5) 订阅队列的消费者都能拿到消息
案例
利用SpringAMQP演示FanoutExchange的使用
实现思路如下:
- 在consumer服务中, 利用代码声明队列、交换机,并将两者绑定
- 在consumer服务中, 编写两个消费者方法,分别监听fanout.queue1和fanout.queue2
- 在publisher中编 写测试方法,向itcast.fanout发送消 息
我们的计划是这样的:
- 创建一个交换机 itcast.fanout,类型是Fanout
- 创建两个队列fanout.queue1和fanout.queue2,绑定到交换机itcast.fanout
3.4.1.声明队列和交换机
Spring提供了一个接口Exchange,来表示所有不同类型的交换机:
在consumer中创建一个类,声明队列和交换机:
package cn.itcast.mq.config;import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.FanoutExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class FanoutConfig {/*** 声明交换机* @return Fanout类型交换机*/@Beanpublic FanoutExchange fanoutExchange(){return new FanoutExchange("itcast.fanout");}/*** 第1个队列*/@Beanpublic Queue fanoutQueue1(){return new Queue("fanout.queue1");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue1(Queue fanoutQueue1, FanoutExchange fanoutExchange){return BindingBuilder.bind(fanoutQueue1).to(fanoutExchange);}/*** 第2个队列*/@Beanpublic Queue fanoutQueue2(){return new Queue("fanout.queue2");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue2(Queue fanoutQueue2, FanoutExchange fanoutExchange){return BindingBuilder.bind(fanoutQueue2).to(fanoutExchange);}
}
运行后,看RabbitMq的控制台
交换机添加成功
队列添加成功
交换机和队列的绑定关系添加成功
3.4.2.消息发送
在publisher服务的SpringAmqpTest类中添加测试方法:
@Test
public void testFanoutExchange() {// 队列名称String exchangeName = "itcast.fanout";// 消息String message = "hello, everyone!";rabbitTemplate.convertAndSend(exchangeName, "", message);
}
3.4.3.消息接收
在consumer服务的SpringRabbitListener中添加两个方法,作为消费者:
@RabbitListener(queues = "fanout.queue1")
public void listenFanoutQueue1(String msg) {System.out.println("消费者1接收到Fanout消息:【" + msg + "】");
}@RabbitListener(queues = "fanout.queue2")
public void listenFanoutQueue2(String msg) {System.out.println("消费者2接收到Fanout消息:【" + msg + "】");
}
启动后接收到消息
3.4.4.总结
交换机的作用是什么?
- 接收publisher发送的消息
- 将消息按照规则路由到与之绑定的队列
- 不能缓存消息,路由失败,消息丢失
- FanoutExchange的会将消息路由到每个绑定的队列
声明队列、交换机、绑定关系的Bean是什么?
- Queue
- FanoutExchange
- Binding
3.5.Direct
在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。
在Direct模型下:
Direct Exchange会将接收到的消息根据规则路由到指定的Queue,因此称为路由模式( routes)。
- 队列与交换机的绑定,不能是任意绑定了,而是要指定一个
RoutingKey
(路由key) - 消息的发送方在 向 Exchange发送消息时,也必须指定消息的
RoutingKey
。 - Exchange不再把消息交给每一个绑定的队列,而是根据消息的
Routing Key
进行判断,只有队列的Routingkey
与消息的Routing key
完全一致,才会接收到消息。(类似于对暗号)。 - 这里注意一个队列可以绑定多个BindingKey,如果两个队列的BindingKey相同,那么交换机发送的时候,会两者都发。
案例需求如下:
-
利用@RabbitListener声明
Exchange
、Queue
、RoutingKey
-
在consumer服务中,编写两个消费者方法,分别监听
direct.queue1
和direct.queue2
-
在publisher中编写测试方法,向itcast. direct发送消息
3.5.1.基于注解声明队列和交换机
基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。
在consumer的SpringRabbitListener中添加两个消费者,同时基于注解来声明队列和交换机:
@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "direct.queue1"),exchange = @Exchange(name = "itcast.direct", type = ExchangeTypes.DIRECT),key = {"red", "blue"}
))
public void listenDirectQueue1(String msg){System.out.println("消费者接收到direct.queue1的消息:【" + msg + "】");
}@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "direct.queue2"),exchange = @Exchange(name = "itcast.direct", type = ExchangeTypes.DIRECT),key = {"red", "yellow"}
))
public void listenDirectQueue2(String msg){System.out.println("消费者接收到direct.queue2的消息:【" + msg + "】");
}
之后启动消费者即可,重启后我们看rabbitmq的控制台
看到交换机多了一个
交换机的绑定多了2种队列,2种routing keys
队列中多了2种
3.5.2.消息发送
在publisher服务的SpringAmqpTest类中添加测试方法:
@Testpublic void testSend2DirectExchange() {String exchangeName = "itcast.direct";String message = "hello i am direct exchange blue";rabbitTemplate.convertAndSend(exchangeName, "blue", message);}
运行结果:
消费者1接收到direct.queue1队列的消息是:hello i am direct exchange blue
更改一下测试
SpringAmqpTest.java
@Testpublic void testSend2DirectExchange() {String exchangeName = "itcast.direct";String message = "hello i am direct exchange yellow";rabbitTemplate.convertAndSend(exchangeName, "yellow", message);}
运行结果
消费者2接收到direct.queue2队列的消息是:hello i am direct exchange yellow
3.5.3.总结
描述下Direct交换机与Fanout交换机的差异?
- Fanout交换机将消息路由给每一个与之绑定的队列
- Direct交换机根据RoutingKey判断路由给哪个队列
- 如果多个队列具有相同的RoutingKey,则与Fanout功能类似
基于@RabbitListener注解声明队列和交换机有哪些常见注解?
- @Queue
- @Exchange
3.6.Topic
3.6.1.说明
Topic
类型的Exchange
与Direct
相比,都是可以根据RoutingKey
把消息路由到不同的队列。只不过Topic
类型Exchange
可以让队列在绑定Routing key
的时候使用通配符!
Routingkey
一般都是有一个或多个单词组成,多个单词之间以”.”分割,例如: item.insert
通配符规则:
#
:匹配一个或多个词
*
:匹配不多不少恰好1个词
举例:
item.#
:能够匹配item.spu.insert
或者 item.spu
item.*
:只能匹配item.spu
图示:
解释:
- Queue1:绑定的是
china.#
,因此凡是以china.
开头的routing key
都会被匹配到。包括china.news和china.weather - Queue2:绑定的是
#.news
,因此凡是以.news
结尾的routing key
都会被匹配。包括china.news和japan.news
案例需求:
实现思路如下:
- 并利用
@RabbitListene
r声明Exchange、Queue、RoutingKey - 在consumer服务中,编写两个消费者方法,分别监听topic.queue1和topic.queue2
- 在publisher中编写测试方法,向itcast. topic发送消息
3.6.2.消息发送
在publisher服务的SpringAmqpTest类中添加测试方法:
/*** topicExchange*/
@Test
public void testSendTopicExchange() {// 交换机名称String exchangeName = "itcast.topic";// 消息String message = "喜报!孙悟空大战哥斯拉,胜!";// 发送消息rabbitTemplate.convertAndSend(exchangeName, "china.news", message);
}
发送消息后,看控制台,发现都收到了消息
SpringAmqpTest类中更改一下
/*** topicExchange*/
@Test
public void testSendTopicExchange() {// 交换机名称String exchangeName = "itcast.topic";// 消息String message = "天气晴";// 发送消息rabbitTemplate.convertAndSend(exchangeName, "china.weather", message);
}
运行后,发现只有1收到了
3.6.3.消息接收
在consumer服务的SpringRabbitListener中添加方法:
@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "topic.queue1"),exchange = @Exchange(name = "itcast.topic", type = ExchangeTypes.TOPIC),key = "china.#"
))
public void listenTopicQueue1(String msg){System.out.println("消费者接收到topic.queue1的消息:【" + msg + "】");
}@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "topic.queue2"),exchange = @Exchange(name = "itcast.topic", type = ExchangeTypes.TOPIC),key = "#.news"
))
public void listenTopicQueue2(String msg){System.out.println("消费者接收到topic.queue2的消息:【" + msg + "】");
}
声明好运行程序,看到RabbitMq的控制台有交换机
有队列
交换机的绑定关系如下:
测试消息的发送
3.6.4.总结
描述下Direct交换机与Topic交换机的差异?
- Topic交换机接收的消息RoutingKey必须是多个单词,以
**.**
分割 - Topic交换机与队列绑定时的bindingKey可以指定通配符
#
:代表0个或多个词*
:代表1个词
3.7.消息转换器
之前说过,Spring会把你发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象。
CTRL + P 发现运行发送的消息类型是Object的
只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题:
- 数据体积过大
- 有安全漏洞
- 可读性差
我们来测试一下。
我们修改FanoutConfig.java,声明了一个Object类型的Queue
@Beanpublic Queue objectQueue() {return new Queue("object.queue");}
运行ConsumerApplication.java
发现ObjectQueue加了进去
3.7.1.测试默认转换器
我们修改消息发送的代码,发送一个Map对象:
@Testpublic void testSend2Object() {String queueName = "object.queue";HashMap<String, Object> map = new HashMap<>();map.put("name", "Lucy");map.put("age", 2);rabbitTemplate.convertAndSend(queueName, map);}
启动consumer服务
发送消息后查看控制台:看见消息有
但是点进去看,发现没有拿到map对象,而是被JDK序列化
3.7.2.配置JSON转换器
显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。
Spring的对消息对象的处理是由org.springframework.amqp.support.converter.MessageConverter来处理的。而默认实现是SimpleMessageConverter,基于JDK的0bjectOutputStream完成序列化。如果要修改只需要定义- -个MessageConverter类型的Bean即可。推荐用JSON方式序列化,步骤如下:
在publisher和consumer两个服务中都引入依赖:(直接父工程引入即可)
消息发送:
<!-- json序列化 --><dependency><groupId>com.fasterxml.jackson.core</groupId><artifactId>jackson-databind</artifactId></dependency>
消息接收:(这里可以省略了)
<dependency><groupId>com.fasterxml.jackson.dataformat</groupId><artifactId>jackson-dataformat-xml</artifactId><version>2.9.10</version>
</dependency>
配置消息转换器。
在启动类中添加一个Bean即可:
PublisherApplication.java
@Bean
public MessageConverter jsonMessageConverter(){return new Jackson2JsonMessageConverter();
}
我们先去控制台清理一下消息
清理完后是没消息的
然后我们测试,再发送一次消息
然后去看RabbitMq的控制台,发现拿到了
现在我们来看消息的接收
修改ConsumerApplication.java添加
@Beanpublic MessageConverter messageConverter() {return new Jackson2JsonMessageConverter();}
修改SpringRabbitListener.java
@RabbitListener(queues = "object.queue")public void listenObjectQueue(Map<String, Object> message) {System.out.println("接收到object.queue的消息是:" + message);}
然后我们启动监听
SpringAMQP中消息的序列化和反序列化是怎么实现的?
- 利用MessageConverter实现的, 默认是JDK的序列化
- 注意发送方 与接收方必须使用相同的MessageConverter