程序计数器是计算机处理器中的寄存器,它包含当前正在执行的指令的地址(位置)。当每个指令被获取,程序计数器的存储地址加一。在每个指令被获取之后,程序计数器指向顺序中的下一个指令。当计算机重启或复位时,程序计数器通常恢复到零。
冯 ·诺伊曼计算机体系结构的主要内容之一就是“程序预存储,计算机自动执行”!处理器要执行的程序(指令序列)都是以二进制代码序列方式预存储在计算机的存储器中,处理器将这些代码逐条地取到处理器中再译码、执行,以完成整个程序的执行。
为了保证程序能够连续地执行下去,CPU必须具有某些手段来确定下一条取指指令的地址。程序计数器(PC )正是起到这种作用,所以通常又称之为‘指令计数器’。在程序开始执行前,将程序指令序列的起始地址,即程序的第一条指令所在的内存单元地址送入PC,CPU按照 PC的指示从内存读取第一条指令(取指)。当执行指令时,CPU自动地修改PC的内容,即每执行一条指令PC增加一个量,这个量等于指令所含的字节数(指令字节数),使 PC总是指向下一条将要取指的指令地址。由于大多数指令都是按顺序来执行的,所以修改PC 的过程通常只是简单的对PC 加“指令字节数”。
当程序转移时,转移指令执行的最终结果就是要改变PC的值,此PC值就是转去的目标地址。处理器总是按照PC 指向取指、译码、执行,以此实现了程序转移。ARM 处理器中使用R15 作为PC,它总是指向取指单元,并且ARM 处理器中只有一个PC 寄存器,被各模式共用。R15 有32 位宽度(下述标记为R15[31:0],表示R15 的‘第31位’到‘第0位'),ARM 处理器可以直接寻址4GB的地址空间(2^32 = 4G )。
[3] 但是,当遇到转移指令如JMP(跳转、外语全称:JUMP)指令时,后继指令的地址(即PC的内容)必须从指令寄存器中的地址字段取得。在这种情况下,下一条从内存取出的指令将由转移指令来规定,而不像通常一样按顺序来取得。因此程序计数器的结构应当是具有寄存信息和计数两种功能的结构。