挑战杯 基于深度学习的人脸表情识别

文章目录

  • 0 前言
  • 1 技术介绍
    • 1.1 技术概括
    • 1.2 目前表情识别实现技术
  • 2 实现效果
  • 3 深度学习表情识别实现过程
    • 3.1 网络架构
    • 3.2 数据
    • 3.3 实现流程
    • 3.4 部分实现代码
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的人脸表情识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 技术介绍

1.1 技术概括

面部表情识别技术源于1971年心理学家Ekman和Friesen的一项研究,他们提出人类主要有六种基本情感,每种情感以唯一的表情来反映当时的心理活动,这六种情感分别是愤怒(anger)、高兴(happiness)、悲伤
(sadness)、惊讶(surprise)、厌恶(disgust)和恐惧(fear)。

尽管人类的情感维度和表情复杂度远不是数字6可以量化的,但总体而言,这6种也差不多够描述了。

在这里插入图片描述

1.2 目前表情识别实现技术

在这里插入图片描述
在这里插入图片描述

2 实现效果

废话不多说,先上实现效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3 深度学习表情识别实现过程

3.1 网络架构

在这里插入图片描述
面部表情识别CNN架构(改编自 埃因霍芬理工大学PARsE结构图)

其中,通过卷积操作来创建特征映射,将卷积核挨个与图像进行卷积,从而创建一组要素图,并在其后通过池化(pooling)操作来降维。

在这里插入图片描述

3.2 数据

主要来源于kaggle比赛,下载地址。
有七种表情类别: (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral).
数据是48x48 灰度图,格式比较奇葩。
第一列是情绪分类,第二列是图像的numpy,第三列是train or test。

在这里插入图片描述

3.3 实现流程

在这里插入图片描述

3.4 部分实现代码

import cv2import sysimport jsonimport numpy as npfrom keras.models import model_from_jsonemotions = ['angry', 'fear', 'happy', 'sad', 'surprise', 'neutral']cascPath = sys.argv[1]faceCascade = cv2.CascadeClassifier(cascPath)noseCascade = cv2.CascadeClassifier(cascPath)# load json and create model archjson_file = open('model.json','r')loaded_model_json = json_file.read()json_file.close()model = model_from_json(loaded_model_json)# load weights into new modelmodel.load_weights('model.h5')# overlay meme facedef overlay_memeface(probs):if max(probs) > 0.8:emotion = emotions[np.argmax(probs)]return 'meme_faces/{}-{}.png'.format(emotion, emotion)else:index1, index2 = np.argsort(probs)[::-1][:2]emotion1 = emotions[index1]emotion2 = emotions[index2]return 'meme_faces/{}-{}.png'.format(emotion1, emotion2)def predict_emotion(face_image_gray): # a single cropped faceresized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA)# cv2.imwrite(str(index)+'.png', resized_img)image = resized_img.reshape(1, 1, 48, 48)list_of_list = model.predict(image, batch_size=1, verbose=1)angry, fear, happy, sad, surprise, neutral = [prob for lst in list_of_list for prob in lst]return [angry, fear, happy, sad, surprise, neutral]video_capture = cv2.VideoCapture(0)while True:# Capture frame-by-frameret, frame = video_capture.read()img_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY,1)faces = faceCascade.detectMultiScale(img_gray,scaleFactor=1.1,minNeighbors=5,minSize=(30, 30),flags=cv2.cv.CV_HAAR_SCALE_IMAGE)# Draw a rectangle around the facesfor (x, y, w, h) in faces:face_image_gray = img_gray[y:y+h, x:x+w]filename = overlay_memeface(predict_emotion(face_image_gray))print filenamememe = cv2.imread(filename,-1)# meme = (meme/256).astype('uint8')try:meme.shape[2]except:meme = meme.reshape(meme.shape[0], meme.shape[1], 1)# print meme.dtype# print meme.shapeorig_mask = meme[:,:,3]# print orig_mask.shape# memegray = cv2.cvtColor(orig_mask, cv2.COLOR_BGR2GRAY)ret1, orig_mask = cv2.threshold(orig_mask, 10, 255, cv2.THRESH_BINARY)orig_mask_inv = cv2.bitwise_not(orig_mask)meme = meme[:,:,0:3]origMustacheHeight, origMustacheWidth = meme.shape[:2]roi_gray = img_gray[y:y+h, x:x+w]roi_color = frame[y:y+h, x:x+w]# Detect a nose within the region bounded by each face (the ROI)nose = noseCascade.detectMultiScale(roi_gray)for (nx,ny,nw,nh) in nose:# Un-comment the next line for debug (draw box around the nose)#cv2.rectangle(roi_color,(nx,ny),(nx+nw,ny+nh),(255,0,0),2)# The mustache should be three times the width of the nosemustacheWidth =  20 * nwmustacheHeight = mustacheWidth * origMustacheHeight / origMustacheWidth# Center the mustache on the bottom of the nosex1 = nx - (mustacheWidth/4)x2 = nx + nw + (mustacheWidth/4)y1 = ny + nh - (mustacheHeight/2)y2 = ny + nh + (mustacheHeight/2)# Check for clippingif x1 < 0:x1 = 0if y1 < 0:y1 = 0if x2 > w:x2 = wif y2 > h:y2 = h# Re-calculate the width and height of the mustache imagemustacheWidth = (x2 - x1)mustacheHeight = (y2 - y1)# Re-size the original image and the masks to the mustache sizes# calcualted abovemustache = cv2.resize(meme, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)mask = cv2.resize(orig_mask, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)mask_inv = cv2.resize(orig_mask_inv, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)# take ROI for mustache from background equal to size of mustache imageroi = roi_color[y1:y2, x1:x2]# roi_bg contains the original image only where the mustache is not# in the region that is the size of the mustache.roi_bg = cv2.bitwise_and(roi,roi,mask = mask_inv)# roi_fg contains the image of the mustache only where the mustache isroi_fg = cv2.bitwise_and(mustache,mustache,mask = mask)# join the roi_bg and roi_fgdst = cv2.add(roi_bg,roi_fg)# place the joined image, saved to dst back over the original imageroi_color[y1:y2, x1:x2] = dstbreak#     cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)#     angry, fear, happy, sad, surprise, neutral = predict_emotion(face_image_gray)#     text1 = 'Angry: {}     Fear: {}   Happy: {}'.format(angry, fear, happy)#     text2 = '  Sad: {} Surprise: {} Neutral: {}'.format(sad, surprise, neutral)## cv2.putText(frame, text1, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3)# cv2.putText(frame, text2, (50, 150), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3)# Display the resulting framecv2.imshow('Video', frame)if cv2.waitKey(1) & 0xFF == ord('q'):break# When everything is done, release the capturevideo_capture.release()cv2.destroyAllWindows()

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/723344.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

羊大师揭秘,羊奶有哪些好处和不足呢?

羊大师揭秘&#xff0c;羊奶有哪些好处和不足呢&#xff1f; 羊奶的好处主要包括&#xff1a; 营养丰富&#xff1a;羊奶中含有多种人体所需的营养成分&#xff0c;如蛋白质、脂肪、碳水化合物、矿物质和维生素等。尤其是蛋白质含量高&#xff0c;且易于人体吸收利用。 增强免…

Spring——Bean的作用域

bean的作用域 Bean Scope Scope说明singleton&#xff08;默认情况下&#xff09;为每个Spring IoC容器将单个Bean定义的Scope扩大到单个对象实例。prototype将单个Bean定义的Scope扩大到任何数量的对象实例。session将单个Bean定义的Scope扩大到一个HTTP Session 的生命周期…

Unity用Shader将一张图片变成描边图片素描风格。

环境&#xff1a; unity2021.3.x 效果&#xff1a; 实现核心思路(shader)&#xff1a; fixed4 frag (v2f i) : SV_Target {fixed4 col tex2D(_MainTex, i.uv);// 调整相似度bool isRedMatch abs(col.r - _TargetColor.r) < 0.15;bool isGreenMatch abs(col.g - _Target…

什么是系统工程(字幕)45

0 00:00:01,030 --> 00:00:03,910 那首先呢&#xff0c;我们就要 1 00:00:04,380 --> 00:00:05,974 加一个分流器了 2 00:00:05,974 --> 00:00:07,568 它是一个三通接头 3 00:00:07,568 --> 00:00:09,960 三通接头在这里嘛&#xff0c;拖上来 4 00:00:11,530 -…

代码随想录算法训练营第三十四天| 860.柠檬水找零 、406.根据身高重建队列 、452. 用最少数量的箭引爆气球

文章目录 1.柠檬水找零2.根据身高重建队列3.用最少数量的箭引爆气球 1.柠檬水找零 在柠檬水摊上&#xff0c;每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品&#xff0c;&#xff08;按账单 bills 支付的顺序&#xff09;一次购买一杯。 每位顾客只买一杯柠檬水&#xf…

【Photoshop2020版本】零基础笔记(一)

哈喽大家好~最近博客内容换方向了哈哈哈~换成“实用版”了。 今天给大家带来的是 PS 相关内容 其实我也是刚学PS&#xff0c;所以想着自己做笔记还不如发布出去&#xff0c;让大家都能看到&#xff0c;有兴趣的伙伴们&#xff0c;可以跟着我的笔记一块学习&#xff0c;这个专…

操作系统(笔记)(一)

1、操作系统的功能和目标 1.1功能 存储管理文件管理设备管理处理机管理进程管理 1.2目标 方便性&#xff1a;操作系统作为用户与计算机硬件系统之间的接口&#xff0c;提供了直观的命令和界面&#xff0c;使得用户能够更容易地操作计算机。有效性&#xff1a;操作系统旨在提…

将ppt里的视频导出来

将ppt的后缀从pptx改为zip 找到【media】里面有存放图片和音频以及视频&#xff0c;看文件名后缀可以找到&#xff0c;mp4的即为视频&#xff0c;直接复制粘贴到桌面即可。 关闭压缩软件把ppt后缀改回&#xff0c;不影响ppt正常使用。

【论文阅读】Mamba:选择状态空间模型的线性时间序列建模(二)

文章目录 3.4 一个简化的SSM结构3.5 选择机制的性质3.5.1 和门控机制的联系3.5.2 选择机制的解释 3.6 额外的模型细节A 讨论&#xff1a;选择机制C 选择SSM的机制 Mamba论文 第一部分 Mamba:选择状态空间模型的线性时间序列建模(一) 3.4 一个简化的SSM结构 如同结构SSM&#…

【笔记】ArkTS 语言(OpenHarmony系统)

一、官方简介和文档 介绍&#xff1a;aArkTS 语言 | 华为开发者联盟 (huawei.com) 学习指南&#xff08;文档&#xff09;&#xff1a;初识ArkTS语言-学习ArkTS语言-入门 | 华为开发者联盟 (huawei.com) 二、ArkTS语言知识 &#xff08;一&#xff09;编程语言介绍 Mozilla创…

对象变更记录objectlog工具(持续跟新)

文章目录 前言演示代码演示环境引入项目项目框架操作步骤 设计介绍参考仓库 前言 系统基于mybatis-plus, springboot环境 对于重要的一些数据&#xff0c;我们需要记录一条记录的所有版本变化过程&#xff0c;做到持续追踪&#xff0c;为后续问题追踪提供思路。下面展示预期效果…

蓝牙系列一:初识蓝牙

早就对蓝牙的知识垂涎已久&#xff0c;由于各种原因都没能系统的好好的学习一下&#xff08;最大的原因就是自己太懒了&#xff01;&#xff01;&#xff09;&#xff0c;最近有时间来系统的学一下蓝牙的知识。文章中很多都是通过学习韦东山老师的蓝牙讲解&#xff0c;讲得非常…

Excel技巧:如何对含有相同内容的列增加递增序号

如何在Excel中对含有相同内容的单元格自动添加递增序号 当我们在处理Excel数据时&#xff0c;经常会遇到需要根据某一列中的重复内容来对另一列的单元格进行编号的情况。例如&#xff0c;我们可能需要对所有含有特定字符的单元格进行标记&#xff0c;并在另一列中为它们分配一…

C语言项目实战——贪吃蛇

C语言实现贪吃蛇 前言一、 游戏背景二、游戏效果演示三、课程目标四、项目定位五、技术要点六、Win32 API介绍6.1 Win32 API6.2 控制台程序6.3 控制台屏幕上的坐标COORD6.4 GetStdHandle6.5 GetConsoleCursorInfo6.5.1 CONSOLE_CURSOR_INFO 6.6 SetConsoleCursorInfo6.7 SetCon…

2025汤家凤考研数学,基础视频课程+百度网盘+PDF真题讲解

平时大家都半开玩笑地讲&#xff1a;我数学想要考150分&#xff01;那索性今天这一期&#xff0c;今天认真和大家聊一下&#xff1a; 想考到考研数学150分&#xff0c;应该如何准备&#xff1f; 如果还有小伙伴不知道在哪看汤神的ke&#xff0c;可以看一下以下 2025汤神全程…

K线实战分析系列之二十:分手线——少见的持续信号

K线实战分析系列之二十&#xff1a;分手线——少见的持续信号 一、分手线二、分手线总结 一、分手线 从同一个地方出发&#xff0c;到相反的方向结束 二、分手线总结 分手线形态上一种持续信号&#xff0c;一般出现在趋势的中继阶段但是少数情况也会出现在行情的顶底的区域&a…

主备DNS服务器搭建并验证

目录 1. 配置静态网络 2. 配置主备DNS 2.1 DNS备服务器&#xff08;第二个虚拟机&#xff09; 2.2 两个虚拟机操作 2.3 备用服务器&#xff08;第二个虚拟机&#xff09;执行 2.4 两个虚拟机都添加DNS: 3. 验证 3.1 主DNS服务验证: 3.2 备用DNS服务器验证&am…

LSTM长短期记忆网

笔记来源—— 【重温经典】大白话讲解LSTM长短期记忆网络 如何缓解梯度消失&#xff0c;手把手公式推导反向传播 LSTM网络结构 RNN结构 下面拉出一个单元结构进行讲解 &#xff1a;记忆细胞&#xff0c;t-1时刻的记忆细胞 :表示状态,t-1时刻的状态 正是这样经过了一个单元&a…

稀碎从零算法笔记Day9-LeetCode:最后一个单词的长度

题型&#xff1a;字符串、反转字符串 链接:58. 最后一个单词的长度 - 力扣&#xff08;LeetCode&#xff09; 来源&#xff1a;LeetCode 题目描述&#xff08;红字为笔者添加&#xff09; 给你一个字符串 s&#xff0c;由若干单词组成&#xff0c;单词前后用一些空格字符隔…

【Azure 架构师学习笔记】- Azure Service Endpoint

本文属于【Azure 架构师学习笔记】系列。 前言 在做Azure 架构时&#xff0c;经常会被问到Service Endpoint这个点&#xff0c;那么这篇文章来介绍一下Service Endpoint&#xff08;SE&#xff09;。 Azure Service Endpoint 首先它是一个专用通道&#xff0c;在Azure 资源之…