Go语言中的时间控制:定时器技术详细指南

Go语言中的时间控制:定时器技术详细指南

    • 引言
    • 定时器基础
      • 创建和使用`time.Timer`
      • 使用`time.Ticker`实现周期性任务
      • 定时器的内部机制
      • 小结
    • 使用`time.Timer`实现简单的定时任务
      • 创建和启动定时器
      • 停止和重置定时器
      • 定时器的实际应用
      • 小结
    • 利用`time.Ticker`处理重复的定时任务
      • 创建和启动`Ticker`
      • 停止`Ticker`
      • `Ticker`的实际应用
      • 小结
    • 高级定时器技巧
      • 结合通道(Channels)和`select`语句使用定时器
        • 使用`select`语句实现超时控制
      • 管理和取消定时器任务
        • 使用`context`包取消定时任务
      • 小结
    • 定时器的最佳实践和性能考虑
      • 避免创建大量的定时器
      • 使用`time.After`和`time.AfterFunc`进行一次性超时控制
      • 清理停止的定时器
      • 考虑定时器的精度和系统负载
      • 小结
    • 实际案例分析
      • 案例一:Web服务中的会话超时管理
      • 案例二:基于定时器的任务调度系统
      • 小结

在这里插入图片描述

引言

在现代软件开发中,时间的管理和利用成为了一个不可或缺的元素,尤其是在需要精确控制任务执行时间的场景下。Go语言,作为一种高效的编程语言,提供了强大的并发机制,让开发者能够更加容易地构建并发应用。其中,定时器的使用就是Go并发编程实践中的一个重要方面。无论是在web服务中定期清理过期的会话数据,还是在系统监控中周期性地检查系统的健康状态,定时器都扮演着至关重要的角色。

Go语言的定时器使用非常灵活,可以满足各种精确计时和周期性执行任务的需求。通过标准库time包中的TimerTicker,Go让定时任务的实现变得既简单又高效。这些工具不仅能帮助我们管理时间相关的功能,还能在保持应用性能的同时,提高代码的可读性和维护性。

但是,要充分利用Go语言的定时器,就需要对其工作原理和使用方式有一个深入的理解。本文旨在为中级至高级的Go开发者提供一个全面的指南,通过详细介绍如何在Go中使用定时器来执行一次性或者周期性的任务,我们将探索time.Timertime.Ticker的使用方法,讨论它们的工作原理,以及如何在实际项目中应用这些知识来解决具体问题。

我们将从定时器的基本概念讲起,通过实例代码深入分析定时器的创建、启动、停止以及重置等操作,进而探讨在并发环境中使用定时器的高级技巧,包括如何结合Go的并发特性,如通道(channels)和select语句,来实现更加复杂的定时逻辑。最后,我们还将讨论定时器在实际开发中的最佳实践和性能考虑,帮助你避免常见的陷阱,提升应用的效率和稳定性。

随着我们的深入,你将发现,无论是构建高性能的网络服务,还是开发需要精确时间控制的系统应用,掌握Go语言定时器的使用都将为你打开新的可能性。让我们开始这一段旅程,探索Go定时器的奥秘吧。

定时器基础

在深入探讨Go语言中定时器的高级应用之前,首先需要理解定时器的基本概念和工作机制。在Go语言的time包中,提供了TimerTicker两种定时器,它们分别用于处理单次定时任务和重复执行的定时任务。通过这两种定时器,我们可以在Go程序中实现精确的时间管理和任务调度。

创建和使用time.Timer

time.Timer用于在未来某一时刻执行单次的任务。创建一个Timer非常简单,只需要调用time包的NewTimer函数并传入一个时间间隔即可。这个时间间隔代表了从现在开始到定时器触发的时间长度。

timer := time.NewTimer(2 * time.Second)

上面的代码创建了一个定时器,它将在两秒后触发。一旦定时器到达指定时间,就可以从定时器的C通道接收到一个时间值,表示定时器已经触发。

<-timer.C
fmt.Println("Timer expired")

Timer还提供了StopReset方法,允许你在定时器触发之前停止它,或者改变定时器的触发时间。

if timer.Stop() {fmt.Println("Timer stopped before expired")
}

使用time.Ticker实现周期性任务

time.Timer相比,time.Ticker用于处理需要重复执行的任务。通过NewTicker函数,你可以创建一个新的Ticker,它会按照指定的时间间隔重复触发。

ticker := time.NewTicker(1 * time.Second)
for range ticker.C {fmt.Println("Ticker ticked")
}

上面的代码创建了一个每秒触发一次的Ticker。通过遍历TickerC通道,我们可以实现周期性执行的任务。与Timer类似,Ticker也提供了Stop方法用于停止定时器。

定时器的内部机制

Go语言的定时器背后是一个高效的时间管理机制。定时器的触发基于时间轮(timer wheel)算法,这是一种减少时间检查开销的数据结构,能够保证即使在大量定时器存在的情况下也能保持较高的性能。

小结

定时器在Go语言中是实现时间管理和任务调度的基石。无论是执行一次性的延时任务,还是周期性的重复任务,time.Timertime.Ticker都能够满足你的需求。理解和掌握这两种定时器的使用方法,是每一个Go开发者必备的技能。在接下来的章节中,我们将通过更多的示例和场景,深入探讨如何在实际开发中有效地使用定时器。

使用time.Timer实现简单的定时任务

在Go语言中,time.Timer是实现一次性定时任务的基本工具。这一节将详细介绍如何使用time.Timer来执行简单的定时任务,包括定时器的启动、停止以及重置操作。

创建和启动定时器

要创建一个定时器,你只需调用time包的NewTimer函数,并传递一个表示时间间隔的time.Duration值。以下示例展示了如何创建一个在10秒后触发的定时器:

timer := time.NewTimer(10 * time.Second)

创建定时器后,你可以通过timer.C通道等待定时器触发。当定时器到达设定的时间后,当前时间会被发送到timer.C通道,此时你可以执行需要的操作:

<-timer.C
fmt.Println("Timer 1 expired")

停止和重置定时器

在某些情况下,你可能需要在定时器触发之前停止它。Timer提供了一个Stop方法,可以用来阻止定时器的执行。如果定时器已经停止或者已经触发,Stop会返回false;如果成功阻止定时器触发,它会返回true

if !timer.Stop() {fmt.Println("Timer already expired or stopped")
} else {fmt.Println("Timer stopped")
}

如果你想要改变定时器的触发时间,可以使用Reset方法。Reset方法需要一个新的时间间隔作为参数,并重新开始计时。注意,在调用Reset之前,你应该确保定时器的通道已经被清空,否则可能会错过定时器触发的消息。

if !timer.Stop() {<-timer.C
}
timer.Reset(5 * time.Second)

定时器的实际应用

定时器在实际开发中有广泛的应用,比如在Web服务中定时刷新缓存数据,或者在游戏开发中实现倒计时功能。通过time.Timer,你可以精确地控制任务的执行时机,使得程序行为更加可预测和可控。

timer := time.NewTimer(2 * time.Hour)
<-timer.C
// 刷新缓存操作
refreshCache()

在使用定时器时,合理地管理定时器的生命周期是非常重要的。确保在不再需要定时器时停止它,并在使用Reset方法时注意通道的清空,可以避免潜在的内存泄漏和逻辑错误。

小结

本节介绍了如何在Go语言中使用time.Timer实现简单的定时任务。通过创建、启动、停止和重置定时器,你可以在程序中实现精确的时间控制和任务调度。随着对定时器更深入的理解,你将能够更加灵活地处理各种需要时间控制的场景。接下来,我们将探讨如何使用time.Ticker来实现周期性的定时任务,以及如何在更复杂的应用场景中有效地使用定时器。

利用time.Ticker处理重复的定时任务

在Go语言中,当你需要定期执行任务时,time.Ticker是一个非常有用的工具。与time.Timer相比,time.Ticker可以在固定的时间间隔重复触发,非常适合用于实现如心跳检测、定期清理资源等周期性操作。

创建和启动Ticker

要创建一个Ticker,你需要调用time包的NewTicker函数,并传递一个时间间隔作为参数。这个时间间隔定义了Ticker触发的频率。以下代码展示了如何创建一个每秒触发一次的Ticker

ticker := time.NewTicker(1 * time.Second)

一旦Ticker被创建,它就会在每个时间间隔结束时通过其C通道发送当前时间。你可以通过遍历这个通道来处理周期性任务:

for t := range ticker.C {fmt.Println("Tick at", t)
}

停止Ticker

当你不再需要Ticker时,应该调用它的Stop方法来停止它。这是非常重要的,因为它可以防止Ticker继续发送时间到通道,从而避免潜在的资源泄漏。

ticker.Stop()

请注意,与TimerStop方法不同,TickerStop方法不会关闭C通道。如果你试图从一个已停止的TickerC通道接收数据,会发生阻塞,因为没有更多的值会被发送到通道。

Ticker的实际应用

Ticker在很多场景下都非常有用。例如,在Web服务器中,你可能需要定期从数据库加载最新的配置信息,或者在后台服务中定期执行数据备份操作。

ticker := time.NewTicker(30 * time.Minute)
go func() {for range ticker.C {// 执行定期的数据备份操作backupData()}
}()

通过Ticker,你可以确保这些任务能够按照预定的频率稳定运行,而不需要复杂的时间管理逻辑。

小结

time.Ticker提供了一种方便的方法来执行周期性的定时任务。通过创建、启动和停止Ticker,你可以在Go程序中实现精确的周期性操作,无论是简单的心跳检测,还是复杂的资源管理任务。正确使用Ticker,能够让你的应用更加健壮和可靠。

接下来,我们将深入探讨一些高级定时器技巧,包括如何在并发环境中有效使用定时器,以及如何处理定时器相关的高级场景。这些技巧将帮助你更好地掌握Go语言的定时器功能,使你能够在更复杂的项目中灵活应用。

高级定时器技巧

随着对Go语言定时器更深入的探讨,我们来到了一些高级技巧,这些技巧对于构建高效且健壮的并发应用尤为重要。本节将重点讲解如何在并发环境中使用定时器,以及如何利用Go的特性来管理和取消定时器任务。

结合通道(Channels)和select语句使用定时器

在Go的并发模型中,通道(Channels)和select语句是核心组件。它们可以与定时器结合使用,以实现复杂的同步需求或超时控制。

使用select语句实现超时控制

select语句可以等待多个通道操作,并根据第一个就绪的通道执行相应的操作。这在处理超时场景时非常有用。例如,你可以使用select语句来等待一个操作完成,同时设置一个超时限制:

operation := make(chan bool)
timeout := time.After(5 * time.Second)go func() {// 执行某项操作time.Sleep(2 * time.Second) // 模拟耗时操作operation <- true
}()select {
case <-operation:fmt.Println("Operation finished")
case <-timeout:fmt.Println("Operation timeout")
}

在这个例子中,如果操作在5秒内完成,则会输出"Operation finished";否则,超时分支被触发,输出"Operation timeout"。

管理和取消定时器任务

在并发程序中,有时你需要取消正在等待的定时器任务。虽然time.Timer提供了Stop方法来停止定时器,但在并发环境下取消任务可能需要更细致的控制。

使用context包取消定时任务

Go的context包提供了一种方式来发送取消信号到多个Goroutines,这可以用来在并发环境下取消定时器任务。以下是一个简单的示例:

ctx, cancel := context.WithCancel(context.Background())
timer := time.NewTimer(10 * time.Second)go func() {<-ctx.Done() // 等待取消信号if !timer.Stop() {<-timer.C // 如果定时器已经触发,确保清空通道}
}()// 在某个时刻取消定时器任务
cancel()

在这个例子中,当调用cancel()函数时,通过context发送的取消信号会导致等待ctx.Done()的Goroutine被唤醒。然后,该Goroutine尝试停止定时器,如果定时器已经触发,则确保从timer.C通道中读取,避免泄露。

小结

本节介绍了一些高级定时器技巧,包括如何结合Go的并发特性(如通道和select语句)使用定时器,以及如何在并发环境中管理和取消定时器任务。通过运用这些技巧,你可以构建出更加灵活、健壮的并发应用。

接下来,我们将讨论定时器的最佳实践和性能考虑,这对于开发高性能应用来说至关重要。我们还将探讨一些常见的陷阱,以及如何避免它们,确保你的应用能够高效稳定地运行。

定时器的最佳实践和性能考虑

在Go语言中有效地使用定时器不仅仅是关于如何设置和取消它们。为了确保你的应用运行高效且稳定,了解定时器的最佳实践和性能考虑是非常重要的。本节将讨论一些关键的最佳实践和性能提示,以帮助你避免常见的陷阱,并优化你的定时器使用。

避免创建大量的定时器

在高并发的应用中,创建大量的定时器可能会对性能产生负面影响。每个time.Timertime.Ticker都会占用一定的系统资源,包括内存和定时器管理的开销。如果可能,考虑使用更少的定时器来管理多个任务,或者使用其他同步机制(如select语句和通道)来实现类似的功能。

使用time.Aftertime.AfterFunc进行一次性超时控制

当你需要简单的超时控制而不需要停止或重置定时器时,time.After函数是一个更简洁和高效的选择。它返回一个通道,该通道在指定的时间后接收到一个时间值。这对于实现简单的超时逻辑非常有用,而且由于time.After在内部复用定时器,因此它比手动创建和管理time.Timer实例更高效。

select {
case result := <-operation:fmt.Println("Operation succeeded:", result)
case <-time.After(5 * time.Second):fmt.Println("Operation timed out")
}

同样,time.AfterFunc允许你指定一个在时间到达后会被调用的回调函数,这对于需要执行异步操作的场景非常方便。

清理停止的定时器

当使用time.TimerStop方法成功停止定时器后,如果定时器已经触发但通道中的值还未被接收,则应清空该通道。这可以通过非阻塞的通道接收操作来实现,以避免潜在的Goroutine泄露。

if !timer.Stop() {select {case <-timer.C:default:}
}

考虑定时器的精度和系统负载

定时器的触发时间可能受到系统调度和当前系统负载的影响。在设计对时间敏感的应用时,应当考虑到这一点。虽然Go的定时器在大多数情况下足够精确,但在高负载或资源受限的环境下,定时器触发的时间可能会有所不同。

小结

本节探讨了使用Go语言定时器的一些最佳实践和性能考虑。通过遵循这些指导原则,你可以更有效地利用定时器,同时避免一些常见的问题。正确使用定时器不仅能提升应用的性能,还能保证其稳定性和可靠性。

至此,我们已经详细讨论了在Go语言中使用定时器的各个方面,从基本概念到高级技巧,再到最佳实践和性能考虑。希望这些知识能帮助你在实际开发中更加灵活和高效地使用定时器,无论是在简单的脚本中,还是在复杂的并发应用程序中。

最后,我们将通过一到两个实际的案例分析,深入探讨如何在复杂的应用场景中实现高效的定时任务处理。这将为你提供一些实用的示例,帮助你更好地理解并应用本文介绍的概念和技巧。

实际案例分析

在理论知识和最佳实践的基础上,通过实际案例的分析可以更好地理解定时器在复杂应用中的应用。本节将探讨几个实际案例,展示如何在Go语言中使用定时器来解决具体问题。

案例一:Web服务中的会话超时管理

在Web应用中,管理用户会话的超时是一个常见需求。通过使用定时器,我们可以有效地管理会话生命周期,自动清理过期的会话,从而释放资源并保持服务的性能。

假设我们有一个简单的会话存储,我们需要在会话到达一定时间后自动过期:

type Session struct {ID        stringUser      stringExpiresAt time.Time
}// sessionStore 存储所有活跃的会话
var sessionStore = make(map[string]Session)
var mutex sync.Mutex// 新建会话时启动定时器
func createSession(user string, duration time.Duration) string {expiresAt := time.Now().Add(duration)session := Session{ID: uuid.New().String(), User: user, ExpiresAt: expiresAt}mutex.Lock()sessionStore[session.ID] = sessionmutex.Unlock()// 启动定时器,到期时删除会话go func(id string) {<-time.After(duration)mutex.Lock()delete(sessionStore, id)mutex.Unlock()fmt.Printf("Session %s expired\n", id)}(session.ID)return session.ID
}

在这个案例中,每创建一个新会话时,我们都会启动一个定时器,当会话到期时自动删除会话。这种方式简单直观,但在会话非常多的情况下,可能会创建大量的Goroutines和定时器。对于更复杂的应用,考虑使用一个中心的定时器来管理所有会话的过期,或者使用第三方库来处理会话管理。

案例二:基于定时器的任务调度系统

在许多应用中,需要定期执行某些任务,比如数据备份、报告生成等。使用time.Ticker可以很容易地实现一个基本的任务调度器:

type Task func()// scheduleTask 定期执行给定的任务
func scheduleTask(interval time.Duration, task Task) {ticker := time.NewTicker(interval)go func() {for range ticker.C {task()}}()
}// 示例任务
func backupData() {fmt.Println("Data backup started at", time.Now())
}func main() {// 每小时执行一次数据备份scheduleTask(1*time.Hour, backupData)// 阻塞主Goroutine,让调度器持续运行select {}
}

这个简单的调度器使用time.Ticker来定期执行任务。虽然这个例子很基础,但它展示了如何利用Go的定时器来实现周期性任务的调度。对于更复杂的需求,可能需要考虑任务的优先级、错误处理、任务持久化等功能。

小结

通过上述案例分析,我们可以看到定时器在实际应用中的灵活性和强大功能。无论是进行会话管理还是构建任务调度系统,Go语言的定时器都能提供简洁有效的解决方案。然而,随着应用规模的增长,需要更加细致地考虑定时器的管理和性能优化,以确保应用的稳定和高效运行。

至此,我们已经全面探讨了在Go语言中使用定时器的方方面面,从基础知识、高级技巧到最佳实践,再到通过实际案例加深理解。希望本文能帮助你在Go语言项目中更加高效地使用定时器,为你的应用带来更大的价值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/720360.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

这里推荐一款unity3d人物动物控制器详细的等学会再写文章

unity3d Animal Controller 1.4.0a 动物NPC行为控制器 动物控制器&#xff08;AC&#xff09;是一个基于脚本架构的动画框架控制器。它适用于任何动物或人形角色的根运动或原地动画。 人和动物的各种动作都有; 小白必选、 我只是运行乐demo就感觉牛 demo路径&#xff1a;Asset…

Python不换行print在终端中不显示

问题描述 当使用不换行 print 即 print(‘test, end) 后立即关闭标准输出 sys.stdout open(os.devnull, w)则 print 的内容不会显示在正常的终端上&#xff08;例外是 PyCharm 中的终端能够正常显示&#xff09;。 复现问题 复现该问题的简易代码&#xff1a; import sys,…

基于pytorch的手写体识别

一、环境搭建 链接: python与深度学习——基础环境搭建 二、数据集准备 本次实验用的是MINIST数据集&#xff0c;利用MINIST数据集进行卷积神经网络的学习&#xff0c;就类似于学习单片机的点灯实验&#xff0c;学习一门机器语言输出hello world。MINIST数据集&#xff0c;可以…

【go从入门到精通】go环境安装和第一个经典程序

go下载和环境变量配置 下载地址 Go官网下载地址&#xff1a;https://golang.org/dl/All releases - The Go Programming Languagehttps://golang.org/dl/ 然后根据自己的系统环境来选择不同的安装包下载&#xff0c;下面我分别针对不同环境进行说明&#xff08;大家可以根据自…

Platformview在iOS与Android上的实现方式对比

Android中早期版本Platformview的实现基于Virtual Display。VirtualDisplay方案的原理是&#xff0c;先将Native View绘制到虚显&#xff0c;然后Flutter通过从虚显输出中获取纹理并将其与自己内部的widget树进行合成&#xff0c;最后作为Flutter在 Android 上更大的纹理输出的…

Unity2023.1.19_ECS_DOTS

Unity2023.1.19_ECS_DOTS 盲学-盲目的学习&#xff1a; 懒着自己整理就看看别人整理的吧&#xff0c;整合一下逻辑通了不少&#xff1a; DOTS/data oriented technology stack-面向数据的技术栈 ECS/Entities-Component-System Unity-Entities包 Entities提供ECS架构面向数…

BUUCTF---[ACTF2020 新生赛]BackupFile1

1.题目描述 2.题目提示backup file &#xff0c;是备份文件的意思。点开链接&#xff0c;页面提示 3.查看源码没有什么有用信息&#xff0c;也没有登录界面&#xff0c;所以也不会用到蚁剑链接来找备份文件&#xff0c;所以大概率就是通过构造playload来查找备份文件。 4.备份…

新手想玩硬件,买单片机还是树莓派好?

新手想玩硬件&#xff0c;买单片机还是树莓派好&#xff1f; 在开始前我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「单片机的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#x…

Springboot+vue的船舶监造系统(有报告)。Javaee项目,springboot vue前后端分离项目。

演示视频&#xff1a; Springbootvue的船舶监造系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot vue前后端分离项目。 项目介绍&#xff1a; 本文设计了一个基于Springbootvue的船舶监造系统&#xff0c;采用M&#xff08;model&#xff09;V&#xff…

二百二十六、Linux——shell脚本查看今天日期、昨天日期、30天前日期、1月前日期

一、目的 由于磁盘资源有限&#xff0c;因为对原始数据的保存有事件限制&#xff0c;因为对于超过一定期限的数据文件则需要删除&#xff0c;要实现定期删除则第一步就是查看日期时间 二、在Linux中创建shell脚本 #! /bin/bash source /etc/profile nowdatedate --date0 da…

Linux 学习笔记(11)

十一、 资源监控 1 、 free 内存监控 语 法&#xff1a; free [-bkmotV][-s < 间隔秒数 >] 补充说明&#xff1a; free 指令会显示内存的使用情况&#xff0c;包括实体内存&#xff0c;虚拟的交换文件内存&#xff0c;共享内存区段&#xff0c;以 及系统核心使用的…

[计算机网络]:流量控制

一、流量控制简介 一条TCP连接的每一侧主机都为其设置了接收缓存&#xff0c;当TCP成功连接后&#xff0c;它发送的数据会放入接受缓存中。相关联的进程会从缓存中读取数据。但是存在一个问题&#xff0c;当某应用程序读取数据速率太慢&#xff0c;而发送数据一方不停的发送数…

【数据结构】复杂度详解

目录 &#xff08;一&#xff09;算法的复杂度 &#xff08;二&#xff09;时间复杂度 &#xff08;1&#xff09;练笔解释&#xff1a; i&#xff0c;示例1 ii&#xff0c;示例2 iii&#xff0c;二分查找 iv&#xff0c;斐波那契 &#xff08;三&#xff09;空间复杂度…

英福康INFICON真空计MPG400MPG401使用说明PPT讲解课件

英福康INFICON真空计MPG400MPG401使用说明PPT讲解课件

Java解决杨辉三角

Java解决杨辉三角 01 题目 给定一个非负整数 *numRows&#xff0c;*生成「杨辉三角」的前 numRows 行。 在「杨辉三角」中&#xff0c;每个数是它左上方和右上方的数的和。 示例 1: 输入: numRows 5 输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]示例 2: 输入: numRo…

计网面试题整理下

1. HTTP常见的状态码有哪些&#xff1f; 常见状态码&#xff1a; 200&#xff1a;服务器已成功处理了请求。 通常&#xff0c;这表示服务器提供了请求的网页。301 &#xff1a; (永久移动) 请求的网页已永久移动到新位置。 服务器返回此响应(对 GET 或 HEAD 请求的响应)时&am…

前端面试 跨域理解

2 实现 2-1 JSONP 实现 2-2 nginx 配置 2-2 vue 开发中 webpack自带跨域 2 -3 下载CORS 插件 或 chrome浏览器配置跨域 2-4 通过iframe 如&#xff1a;aaa.com 中读取bbb.com的localStorage 1)在aaa.com的页面中&#xff0c;在页面中嵌入一个src为bbb.com的iframe&#x…

在全志V853平台上成功部署深度学习步态识别算法

北理工通信课题组辛喆同学在本科毕业设计《基于嵌入式系统的步态识别的研究》中&#xff0c;成功将深度步态识别算法GaitSet移植到全志V853开发板上。本研究在CASIA-B数据集上进行测试&#xff0c;正常行走状态下该系统的步态识别准确率达到了94.9%&#xff0c;背包行走和穿外套…

C++基于多设计模式下的同步异步日志系统day5

C基于多设计模式下的同步&异步日志系统day5 &#x1f4df;作者主页&#xff1a;慢热的陕西人 &#x1f334;专栏链接&#xff1a;C基于多设计模式下的同步&异步日志系统 &#x1f4e3;欢迎各位大佬&#x1f44d;点赞&#x1f525;关注&#x1f693;收藏&#xff0c;&am…

C++:Vector的模拟实现

创作不易&#xff0c;感谢三连 &#xff01;&#xff01; 一&#xff0c;前言 在学习string类的时候&#xff0c;我们可能会发现遍历的话下标访问特别香&#xff0c;比迭代器用的舒服&#xff0c;但是下标其实只能是支持连续的空间&#xff0c;他的使用是非常具有局限性的&am…