计算机设计大赛 深度学习疲劳驾驶检测 opencv python

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现目标
  • 3 当前市面上疲劳驾驶检测的方法
  • 4 相关数据集
  • 5 基于头部姿态的驾驶疲劳检测
    • 5.1 如何确定疲劳状态
    • 5.2 算法步骤
    • 5.3 打瞌睡判断
  • 6 基于CNN与SVM的疲劳检测方法
    • 6.1 网络结构
    • 6.2 疲劳图像分类训练
    • 6.3 训练结果
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习疲劳驾驶检测 opencv python

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

关于对疲劳驾驶的研究不在少数, 不少学者从人物面部入手展开。 人类的面部包含着许多不同的特征信息, 例如其中一些比较明显的特征如打哈欠、 闭眼、
揉眼等表情特征可用来作为判断驾驶员是否处于疲劳状态的依据。 随着计算机技术的不断发展, 尤其是在人工智能相关技术勃发的今天,
借助计算机可以快速有效的识别出图片中人脸特征, 对处于当前时刻驾驶员的精神状态做出判断, 并将疲劳预警信息传达给司机, 以保证交通的安全运行,
减少伤亡事故的发生。

2 实现目标

经查阅相关文献,疲劳在人体面部表情中表现出大致三个类型:打哈欠(嘴巴张大且相对较长时间保持这一状态)、眨眼(或眼睛微闭,此时眨眼次数增多,且眨眼速度变慢)、点头(瞌睡点头)。本实验从人脸朝向、位置、瞳孔朝向、眼睛开合度、眨眼频率、瞳孔收缩率等数据入手,并通过这些数据,实时地计算出驾驶员的注意力集中程度,分析驾驶员是否疲劳驾驶和及时作出安全提示。

3 当前市面上疲劳驾驶检测的方法

学长通过对疲劳驾驶在不同方法下研究进展的分析, 可以更清晰的认识的到当下对该问题较为有效的判定方法。 根据研究对象的不同对检测方法进行分类,
具体分类方法如图

在这里插入图片描述

基于驾驶员面部特征的检测方法是根据人在疲劳时面部变化来分析此时的精神状态。 人在瞌睡、 疲劳时面部表情与清醒时有着明显的区别。
通过装置在车辆中的摄像头对驾驶员人脸图片的采集, 利用计算机图像处理和模式识别, 可以有效检测驾驶员的疲
劳特征信息, 比较直观的特征有: 打哈欠, 眨眼, 低头等。

4 相关数据集

学长收集的疲劳检测数据集

驾驶疲劳人脸数据库图片来源分为 3 部分, 每部分均包含疲劳、 轻度疲劳和非疲劳三种精神状态类别。 样本数据库共 4800 张图像, 其中疲劳状态有
1622 张数据样本, 轻度疲劳有 1506 张数据样本, 非疲劳状态有 1618 张数据样本。 各部分数据结构如下: 网络采集部分疲劳包含 435
张样本图片, 轻度疲劳状态包含 430 张样本图片, 非疲劳状态包含 432 张样本图片, 共 1297 张样本数据图像; 视频数据库采集部分疲劳状态包含
1037张样本图像, 轻度疲劳状态包含 1030 张样本图片, 非疲劳状态包含 1036 张样本图片,共 3103 张样本数据图像;

在这里插入图片描述

5 基于头部姿态的驾驶疲劳检测

5.1 如何确定疲劳状态

  • 思路一:可利用姿态估计结果(如Pitch的读数)来判断是否点头及点头幅度

  • 思路二:或用鼻尖处30号点的前后移动值(或是方差,方差表示一个单位时间数据的偏离程度,程度越大,则表示发生点头动作的概率越大、点头幅度越大)

在这里插入图片描述

5.2 算法步骤

  • 第一步:2D人脸关键点检测;

  • 第二步:3D人脸模型匹配;

  • 第三步:求解3D点和对应2D点的转换关系;

  • 第四步:根据旋转矩阵求解欧拉角。

    import cv2
    import dlib
    import numpy as np
    from imutils import face_utils
    """
    思路:第一步:2D人脸关键点检测;第二步:3D人脸模型匹配;第三步:求解3D点和对应2D点的转换关系;第四步:根据旋转矩阵求解欧拉角。
    """# 加载人脸检测和姿势估计模型(dlib)face_landmark_path = 'D:/myworkspace/JupyterNotebook/fatigue_detecting/model/shape_predictor_68_face_landmarks.dat'"""
    只要知道世界坐标系内点的位置、像素坐标位置和相机参数就可以搞定旋转和平移矩阵(OpenCV自带函数solvePnp())
    """# 世界坐标系(UVW):填写3D参考点,该模型参考http://aifi.isr.uc.pt/Downloads/OpenGL/glAnthropometric3DModel.cppobject_pts = np.float32([[6.825897, 6.760612, 4.402142],  #33左眉左上角[1.330353, 7.122144, 6.903745],  #29左眉右角[-1.330353, 7.122144, 6.903745], #34右眉左角[-6.825897, 6.760612, 4.402142], #38右眉右上角[5.311432, 5.485328, 3.987654],  #13左眼左上角[1.789930, 5.393625, 4.413414],  #17左眼右上角[-1.789930, 5.393625, 4.413414], #25右眼左上角[-5.311432, 5.485328, 3.987654], #21右眼右上角[2.005628, 1.409845, 6.165652],  #55鼻子左上角[-2.005628, 1.409845, 6.165652], #49鼻子右上角[2.774015, -2.080775, 5.048531], #43嘴左上角[-2.774015, -2.080775, 5.048531],#39嘴右上角[0.000000, -3.116408, 6.097667], #45嘴中央下角[0.000000, -7.415691, 4.070434]])#6下巴角# 相机坐标系(XYZ):添加相机内参K = [6.5308391993466671e+002, 0.0, 3.1950000000000000e+002,0.0, 6.5308391993466671e+002, 2.3950000000000000e+002,0.0, 0.0, 1.0]# 等价于矩阵[fx, 0, cx; 0, fy, cy; 0, 0, 1]# 图像中心坐标系(uv):相机畸变参数[k1, k2, p1, p2, k3]D = [7.0834633684407095e-002, 6.9140193737175351e-002, 0.0, 0.0, -1.3073460323689292e+000]# 像素坐标系(xy):填写凸轮的本征和畸变系数cam_matrix = np.array(K).reshape(3, 3).astype(np.float32)
    dist_coeffs = np.array(D).reshape(5, 1).astype(np.float32)# 重新投影3D点的世界坐标轴以验证结果姿势reprojectsrc = np.float32([[10.0, 10.0, 10.0],[10.0, 10.0, -10.0],[10.0, -10.0, -10.0],[10.0, -10.0, 10.0],[-10.0, 10.0, 10.0],[-10.0, 10.0, -10.0],[-10.0, -10.0, -10.0],[-10.0, -10.0, 10.0]])# 绘制正方体12轴line_pairs = [[0, 1], [1, 2], [2, 3], [3, 0],[4, 5], [5, 6], [6, 7], [7, 4],[0, 4], [1, 5], [2, 6], [3, 7]]def get_head_pose(shape):# 填写2D参考点,注释遵循https://ibug.doc.ic.ac.uk/resources/300-W/"""17左眉左上角/21左眉右角/22右眉左上角/26右眉右上角/36左眼左上角/39左眼右上角/42右眼左上角/45右眼右上角/31鼻子左上角/35鼻子右上角/48左上角/54嘴右上角/57嘴中央下角/8下巴角"""# 像素坐标集合image_pts = np.float32([shape[17], shape[21], shape[22], shape[26], shape[36],shape[39], shape[42], shape[45], shape[31], shape[35],shape[48], shape[54], shape[57], shape[8]])"""用solvepnp或sovlepnpRansac,输入3d点、2d点、相机内参、相机畸变,输出r、t之后用projectPoints,输入3d点、相机内参、相机畸变、r、t,输出重投影2d点计算原2d点和重投影2d点的距离作为重投影误差"""# solvePnP计算姿势——求解旋转和平移矩阵:# rotation_vec表示旋转矩阵,translation_vec表示平移矩阵,cam_matrix与K矩阵对应,dist_coeffs与D矩阵对应。_, rotation_vec, translation_vec = cv2.solvePnP(object_pts, image_pts, cam_matrix, dist_coeffs)# projectPoints重新投影误差reprojectdst, _ = cv2.projectPoints(reprojectsrc, rotation_vec, translation_vec, cam_matrix,dist_coeffs)reprojectdst = tuple(map(tuple, reprojectdst.reshape(8, 2)))# 以8行2列显示# 计算欧拉角calc euler angle# 参考https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#decomposeprojectionmatrixrotation_mat, _ = cv2.Rodrigues(rotation_vec)#罗德里格斯公式(将旋转矩阵转换为旋转向量)pose_mat = cv2.hconcat((rotation_mat, translation_vec))# 水平拼接,vconcat垂直拼接# eulerAngles –可选的三元素矢量,包含三个以度为单位的欧拉旋转角度_, _, _, _, _, _, euler_angle = cv2.decomposeProjectionMatrix(pose_mat)# 将投影矩阵分解为旋转矩阵和相机矩阵return reprojectdst, euler_angledef main():# returncap = cv2.VideoCapture(0)if not cap.isOpened():print("Unable to connect to camera.")return# 检测人脸detector = dlib.get_frontal_face_detector()# 检测第一个人脸的关键点predictor = dlib.shape_predictor(face_landmark_path)while cap.isOpened():ret, frame = cap.read()if ret:face_rects = detector(frame, 0)if len(face_rects) > 0:# 循环脸部位置信息,使用predictor(gray, rect)获得脸部特征位置的信息shape = predictor(frame, face_rects[0])# 将脸部特征信息转换为数组array的格式shape = face_utils.shape_to_np(shape)# 获取头部姿态reprojectdst, euler_angle = get_head_pose(shape)pitch = format(euler_angle[0, 0])yaw = format(euler_angle[1, 0])roll = format(euler_angle[2, 0])print('pitch:{}, yaw:{}, roll:{}'.format(pitch, yaw, roll))# 标出68个特征点for (x, y) in shape:cv2.circle(frame, (x, y), 1, (0, 0, 255), -1)# 绘制正方体12轴for start, end in line_pairs:cv2.line(frame, reprojectdst[start], reprojectdst[end], (0, 0, 255))# 显示角度结果cv2.putText(frame, "X: " + "{:7.2f}".format(euler_angle[0, 0]), (20, 20), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)cv2.putText(frame, "Y: " + "{:7.2f}".format(euler_angle[1, 0]), (20, 50), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)cv2.putText(frame, "Z: " + "{:7.2f}".format(euler_angle[2, 0]), (20, 80), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)    # 按q退出提示cv2.putText(frame, "Press 'q': Quit", (20, 450),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (84, 255, 159), 2)# 窗口显示 show with opencvcv2.imshow("Head_Posture", frame)if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放摄像头 release cameracap.release()# do a bit of cleanupcv2.destroyAllWindows()if __name__ == '__main__':main()

在这里插入图片描述

5.3 打瞌睡判断

头部姿态判断打瞌睡得到实时头部姿态的旋转角度过后,为头部旋转角度的3个参数Yaw,Pitch和Roll的示意图,驾驶员在打瞌睡时,显然头部会做类似于点头和倾斜的动作.而根据一般人的打瞌睡时表现出来的头部姿态,显然很少会在Yaw上有动作,而主要集中在Pitch和Roll的行为.设定参数阈值为0.3,在一个时间段内10
s内,当I PitchI≥20°或者|Rolll≥20°的时间比例超过0.3时,就认为驾驶员处于打瞌睡的状态,发出预警。

在这里插入图片描述

from scipy.spatial import distance as distfrom imutils.video import FileVideoStreamfrom imutils.video import VideoStreamfrom imutils import face_utilsimport numpy as np # 数据处理的库 numpyimport argparseimport imutilsimport timeimport dlibimport cv2import mathimport timefrom threading import Thread,# 世界坐标系(UVW):填写3D参考点,该模型参考http://aifi.isr.uc.pt/Downloads/OpenGL/glAnthropometric3DModel.cppobject_pts = np.float32([[6.825897, 6.760612, 4.402142],  #33左眉左上角[1.330353, 7.122144, 6.903745],  #29左眉右角[-1.330353, 7.122144, 6.903745], #34右眉左角[-6.825897, 6.760612, 4.402142], #38右眉右上角[5.311432, 5.485328, 3.987654],  #13左眼左上角[1.789930, 5.393625, 4.413414],  #17左眼右上角[-1.789930, 5.393625, 4.413414], #25右眼左上角[-5.311432, 5.485328, 3.987654], #21右眼右上角[2.005628, 1.409845, 6.165652],  #55鼻子左上角[-2.005628, 1.409845, 6.165652], #49鼻子右上角[2.774015, -2.080775, 5.048531], #43嘴左上角[-2.774015, -2.080775, 5.048531],#39嘴右上角[0.000000, -3.116408, 6.097667], #45嘴中央下角[0.000000, -7.415691, 4.070434]])#6下巴角# 相机坐标系(XYZ):添加相机内参K = [6.5308391993466671e+002, 0.0, 3.1950000000000000e+002,0.0, 6.5308391993466671e+002, 2.3950000000000000e+002,0.0, 0.0, 1.0]# 等价于矩阵[fx, 0, cx; 0, fy, cy; 0, 0, 1]# 图像中心坐标系(uv):相机畸变参数[k1, k2, p1, p2, k3]D = [7.0834633684407095e-002, 6.9140193737175351e-002, 0.0, 0.0, -1.3073460323689292e+000]# 像素坐标系(xy):填写凸轮的本征和畸变系数cam_matrix = np.array(K).reshape(3, 3).astype(np.float32)dist_coeffs = np.array(D).reshape(5, 1).astype(np.float32)# 重新投影3D点的世界坐标轴以验证结果姿势reprojectsrc = np.float32([[10.0, 10.0, 10.0],[10.0, 10.0, -10.0],[10.0, -10.0, -10.0],[10.0, -10.0, 10.0],[-10.0, 10.0, 10.0],[-10.0, 10.0, -10.0],[-10.0, -10.0, -10.0],[-10.0, -10.0, 10.0]])# 绘制正方体12轴line_pairs = [[0, 1], [1, 2], [2, 3], [3, 0],[4, 5], [5, 6], [6, 7], [7, 4],[0, 4], [1, 5], [2, 6], [3, 7]]def get_head_pose(shape):# 头部姿态估计# (像素坐标集合)填写2D参考点,注释遵循https://ibug.doc.ic.ac.uk/resources/300-W/# 17左眉左上角/21左眉右角/22右眉左上角/26右眉右上角/36左眼左上角/39左眼右上角/42右眼左上角/# 45右眼右上角/31鼻子左上角/35鼻子右上角/48左上角/54嘴右上角/57嘴中央下角/8下巴角image_pts = np.float32([shape[17], shape[21], shape[22], shape[26], shape[36],shape[39], shape[42], shape[45], shape[31], shape[35],shape[48], shape[54], shape[57], shape[8]])# solvePnP计算姿势——求解旋转和平移矩阵:# rotation_vec表示旋转矩阵,translation_vec表示平移矩阵,cam_matrix与K矩阵对应,dist_coeffs与D矩阵对应。_, rotation_vec, translation_vec = cv2.solvePnP(object_pts, image_pts, cam_matrix, dist_coeffs)# projectPoints重新投影误差:原2d点和重投影2d点的距离(输入3d点、相机内参、相机畸变、r、t,输出重投影2d点)reprojectdst, _ = cv2.projectPoints(reprojectsrc, rotation_vec, translation_vec, cam_matrix,dist_coeffs)reprojectdst = tuple(map(tuple, reprojectdst.reshape(8, 2)))# 以8行2列显示# 计算欧拉角calc euler angle# 参考https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#decomposeprojectionmatrixrotation_mat, _ = cv2.Rodrigues(rotation_vec)#罗德里格斯公式(将旋转矩阵转换为旋转向量)pose_mat = cv2.hconcat((rotation_mat, translation_vec))# 水平拼接,vconcat垂直拼接# decomposeProjectionMatrix将投影矩阵分解为旋转矩阵和相机矩阵_, _, _, _, _, _, euler_angle = cv2.decomposeProjectionMatrix(pose_mat)pitch, yaw, roll = [math.radians(_) for _ in euler_angle]pitch = math.degrees(math.asin(math.sin(pitch)))roll = -math.degrees(math.asin(math.sin(roll)))yaw = math.degrees(math.asin(math.sin(yaw)))print('pitch:{}, yaw:{}, roll:{}'.format(pitch, yaw, roll))return reprojectdst, euler_angle# 投影误差,欧拉角def eye_aspect_ratio(eye):# 垂直眼标志(X,Y)坐标A = dist.euclidean(eye[1], eye[5])# 计算两个集合之间的欧式距离B = dist.euclidean(eye[2], eye[4])# 计算水平之间的欧几里得距离# 水平眼标志(X,Y)坐标C = dist.euclidean(eye[0], eye[3])# 眼睛长宽比的计算ear = (A + B) / (2.0 * C)# 返回眼睛的长宽比return eardef mouth_aspect_ratio(mouth):# 嘴部A = np.linalg.norm(mouth[2] - mouth[9])  # 51, 59B = np.linalg.norm(mouth[4] - mouth[7])  # 53, 57C = np.linalg.norm(mouth[0] - mouth[6])  # 49, 55mar = (A + B) / (2.0 * C)return mar# 定义常数# 眼睛长宽比# 闪烁阈值EYE_AR_THRESH = 0.2EYE_AR_CONSEC_FRAMES = 3# 打哈欠长宽比# 闪烁阈值MAR_THRESH = 0.5MOUTH_AR_CONSEC_FRAMES = 3# 瞌睡点头HAR_THRESH = 0.3NOD_AR_CONSEC_FRAMES = 3# 初始化帧计数器和眨眼总数COUNTER = 0TOTAL = 0# 初始化帧计数器和打哈欠总数mCOUNTER = 0mTOTAL = 0# 初始化帧计数器和点头总数hCOUNTER = 0hTOTAL = 0# 初始化DLIB的人脸检测器(HOG),然后创建面部标志物预测print("[INFO] loading facial landmark predictor...")# 第一步:使用dlib.get_frontal_face_detector() 获得脸部位置检测器detector = dlib.get_frontal_face_detector()# 第二步:使用dlib.shape_predictor获得脸部特征位置检测器predictor = dlib.shape_predictor('D:/myworkspace/JupyterNotebook/fatigue_detecting/model/shape_predictor_68_face_landmarks.dat')# 第三步:分别获取左右眼面部标志的索引(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"](rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"](mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]# 第四步:打开cv2 本地摄像头cap = cv2.VideoCapture(0)# 从视频流循环帧while True:# 第五步:进行循环,读取图片,并对图片做维度扩大,并进灰度化ret, frame = cap.read()frame = imutils.resize(frame, width=720)gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 第六步:使用detector(gray, 0) 进行脸部位置检测rects = detector(gray, 0)# 第七步:循环脸部位置信息,使用predictor(gray, rect)获得脸部特征位置的信息for rect in rects:shape = predictor(gray, rect)# 第八步:将脸部特征信息转换为数组array的格式shape = face_utils.shape_to_np(shape)# 第九步:提取左眼和右眼坐标leftEye = shape[lStart:lEnd]rightEye = shape[rStart:rEnd]# 嘴巴坐标mouth = shape[mStart:mEnd]        # 第十步:构造函数计算左右眼的EAR值,使用平均值作为最终的EARleftEAR = eye_aspect_ratio(leftEye)rightEAR = eye_aspect_ratio(rightEye)ear = (leftEAR + rightEAR) / 2.0# 打哈欠mar = mouth_aspect_ratio(mouth)# 第十一步:使用cv2.convexHull获得凸包位置,使用drawContours画出轮廓位置进行画图操作leftEyeHull = cv2.convexHull(leftEye)rightEyeHull = cv2.convexHull(rightEye)cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)mouthHull = cv2.convexHull(mouth)cv2.drawContours(frame, [mouthHull], -1, (0, 255, 0), 1)# 第十二步:进行画图操作,用矩形框标注人脸left = rect.left()top = rect.top()right = rect.right()bottom = rect.bottom()cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 1)    '''分别计算左眼和右眼的评分求平均作为最终的评分,如果小于阈值,则加1,如果连续3次都小于阈值,则表示进行了一次眨眼活动'''# 第十三步:循环,满足条件的,眨眼次数+1if ear < EYE_AR_THRESH:# 眼睛长宽比:0.2COUNTER += 1else:# 如果连续3次都小于阈值,则表示进行了一次眨眼活动if COUNTER >= EYE_AR_CONSEC_FRAMES:# 阈值:3TOTAL += 1# 重置眼帧计数器COUNTER = 0# 第十四步:进行画图操作,同时使用cv2.putText将眨眼次数进行显示cv2.putText(frame, "Faces: {}".format(len(rects)), (10, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)     cv2.putText(frame, "COUNTER: {}".format(COUNTER), (150, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)cv2.putText(frame, "Blinks: {}".format(TOTAL), (450, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2)'''计算张嘴评分,如果小于阈值,则加1,如果连续3次都小于阈值,则表示打了一次哈欠,同一次哈欠大约在3帧'''# 同理,判断是否打哈欠    if mar > MAR_THRESH:# 张嘴阈值0.5mCOUNTER += 1cv2.putText(frame, "Yawning!", (10, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)else:# 如果连续3次都小于阈值,则表示打了一次哈欠if mCOUNTER >= MOUTH_AR_CONSEC_FRAMES:# 阈值:3mTOTAL += 1# 重置嘴帧计数器mCOUNTER = 0cv2.putText(frame, "COUNTER: {}".format(mCOUNTER), (150, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.putText(frame, "MAR: {:.2f}".format(mar), (300, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)cv2.putText(frame, "Yawning: {}".format(mTOTAL), (450, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2)"""瞌睡点头"""# 第十五步:获取头部姿态reprojectdst, euler_angle = get_head_pose(shape)har = euler_angle[0, 0]# 取pitch旋转角度if har > HAR_THRESH:# 点头阈值0.3hCOUNTER += 1else:# 如果连续3次都小于阈值,则表示瞌睡点头一次if hCOUNTER >= NOD_AR_CONSEC_FRAMES:# 阈值:3hTOTAL += 1# 重置点头帧计数器hCOUNTER = 0# 绘制正方体12轴for start, end in line_pairs:cv2.line(frame, reprojectdst[start], reprojectdst[end], (0, 0, 255))# 显示角度结果cv2.putText(frame, "X: " + "{:7.2f}".format(euler_angle[0, 0]), (10, 90), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 255, 0), thickness=2)# GREENcv2.putText(frame, "Y: " + "{:7.2f}".format(euler_angle[1, 0]), (150, 90), cv2.FONT_HERSHEY_SIMPLEX,0.75, (255, 0, 0), thickness=2)# BLUEcv2.putText(frame, "Z: " + "{:7.2f}".format(euler_angle[2, 0]), (300, 90), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)# RED    cv2.putText(frame, "Nod: {}".format(hTOTAL), (450, 90),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2)# 第十六步:进行画图操作,68个特征点标识for (x, y) in shape:cv2.circle(frame, (x, y), 1, (0, 0, 255), -1)print('嘴巴实时长宽比:{:.2f} '.format(mar)+"\t是否张嘴:"+str([False,True][mar > MAR_THRESH]))print('眼睛实时长宽比:{:.2f} '.format(ear)+"\t是否眨眼:"+str([False,True][COUNTER>=1]))# 确定疲劳提示:眨眼50次,打哈欠15次,瞌睡点头15次if TOTAL >= 50 or mTOTAL>=15 or hTOTAL>=15:cv2.putText(frame, "SLEEP!!!", (100, 200),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 3)# 按q退出cv2.putText(frame, "Press 'q': Quit", (20, 500),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (84, 255, 159), 2)# 窗口显示 show with opencvcv2.imshow("Frame", frame)# if the `q` key was pressed, break from the loopif cv2.waitKey(1) & 0xFF == ord('q'):break# 释放摄像头 release cameracap.release()# do a bit of cleanupcv2.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述

6 基于CNN与SVM的疲劳检测方法

6.1 网络结构

学长将卷积神经网络作为特征提取器, 支持向量机作为分类识别器并通过串联将两者结合 , 构造理想的深度识别模型, 提高对驾驶员疲劳的识别准确率。
本次课题主要以实现提高识别精度为目的, 设计使用的特征提取网络结构中卷积层、 池化层以及全连接层个数均为两层;
在网络的结尾处添加一层支持向量机作为识别分类器;

在这里插入图片描述
根据对卷积神经网络的描述, 这里设计使用的网络结构为: 输入层、 二层卷积层、 二层池化层、 二层全连接层以及 SVM
分类器组成的卷积神经网络对采集数据进行实验。

可将网络视为三个部分, 数据输入部分即网络输入层, 为特征提取部分由卷积层和池化层构成, SVM 为分类识别部分; 三部分网络串联出整体识别框架,
且相互间约束不大, 为后续优化工作提供了条件。

6.2 疲劳图像分类训练

网络的训练由于数据量较大进行实验时将数据分为多个批次, 每个批次中含有 20张图像, 经过前向、 反向传播后更新网络参数, 训练出误差合适的网络。 测试时,
图像由网络进行识别, 根据得到的识别正确率来验证网络的可行性。

在这里插入图片描述

疲劳驾驶检测需对网络进行训练, 在保证网络训练准确率达到一定精度后即可对图像进行判别; 疲劳驾驶网络训练算法过程如下:

  • Step1: 网络初始化: 初始化网络学习率η, 在数值范围[0, 1]中随机初始化网络参数权值及偏置值; 设置网络结构: 卷积核大小为 5×5, 每批次样本数量 20;
  • Step2: 随机选择数据库内面部表情图像并依次输入网络, 网络按照送入每一批次的图像进行训练;
  • Step3: 网络将训练得到的输出值同图像期望值进行比较, 计算出输出误差;
  • Step4: 根据反向传播原理将误差反向传播计算, 并调整网络参数权值和偏置值;
  • Step5: 判断迭代次数, 达到期望的迭代步数后转到 Step6, 否则转到 Step3;
  • Step6: 将 CNN 提取到的图像特征传入 SVM 中进行训练;
  • Step7: 结束。

6.3 训练结果

学长将对建立起的数据集进行实验, 实验中分别在每一批次下对识别正确和错误个数进行统计, 然后同批次中图片数量相比, 得出最终的准确率和损失率(错误率) 。

在这里插入图片描述
在这里插入图片描述

模型测试结果

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/720142.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于springboot实现粮食仓库管理系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现粮食仓库管理系统演示 摘要 粮食作为人类生活的重要物质来源&#xff0c;在粮食流通过程中对于粮食仓库的管理不容忽视&#xff0c;随着我国粮食生产能力的提升以粮食存储管理的不断革新&#xff0c;粮食产量的增加为粮食仓储管理带来了挑战也带来了机遇&am…

蜂窝物联:物联网大数据云平台功能模块简介

蜂窝云平台可远程获取现场环境&#xff08;如温室大棚、稻田&#xff09;的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像&#xff0c;通过数据模型分析&#xff0c;可以自动控制湿帘、风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光、增氧机等设备&#xff1b;…

MySQL面试题-锁(答案版)

锁 1、MySQL 有哪些锁&#xff1f; &#xff08;1&#xff09;全局锁 加了全局锁之后&#xff0c;整个数据库就处于只读状态了&#xff0c;这时其他线程执行以下操作&#xff0c;都会被阻塞&#xff1a; 对数据的增删改操作&#xff0c;比如 insert、delete、update等语句&…

【深度学习笔记】计算机视觉——R-CNN

区域卷积神经网络&#xff08;R-CNN&#xff09;系列 sec_rcnn 除了 sec_ssd中描述的单发多框检测之外&#xff0c; 区域卷积神经网络&#xff08;region-based CNN或regions with CNN features&#xff0c;R-CNN&#xff09; Girshick.Donahue.Darrell.ea.2014也是将深度模型…

知识图谱辅助的个性化推荐系统

知识图谱辅助的个性化推荐系统 将从下面4个方面展开&#xff1a; 推荐系统的基础知识知识图谱辅助的推荐方法介绍基于embedding的知识图谱推荐方法混合型知识图谱推荐方法 推荐系统的基础知识 1、什么是推荐系统 在当前互联网时代&#xff0c;推荐系统是所有面向用户的互联…

【深度学习笔记】计算机视觉——多尺度目标检测

多尺度目标检测 在 sec_anchor中&#xff0c;我们以输入图像的每个像素为中心&#xff0c;生成了多个锚框。 基本而言&#xff0c;这些锚框代表了图像不同区域的样本。 然而&#xff0c;如果为每个像素都生成的锚框&#xff0c;我们最终可能会得到太多需要计算的锚框。 想象一…

【PHP】PHP实现与硬件串口交互,向硬件设备发送指令数据(下)

目录 一、前言 二、 效果图 三、安装PHP扩展 四、添加模拟串口 五、PHP发送数据给硬件 PHP代码 前端代码 一、前言 上篇文章写到PHP怎么与硬件串口交互之实时接收硬件发送的数据&#xff0c;这里同样是以天平为例&#xff0c;介绍怎么向硬件设备发送数据&#xff0c; 需…

深度学习500问——Chapter02:机器学习基础(3)

文章目录 2.10 主成分分析&#xff08;PCA&#xff09; 2.10.1 主成分分析&#xff08;PCA&#xff09;思想总结 2.10.2 图解PCA核心思想 2.10.3 PCA算法推理 2.10.4 PCA算法流程总结 2.10.5 PCA算法主要优缺点 2.10.6 降维的必要性及目的 2.10.7 KPCA与PCA的区别 2.11 模型评估…

利用excel文件增量同步一个库的数据并自动校正两端数据库条数不一致

利用excel文件增量同步一个库的数据并自动校正两端数据库条数不一致 现在有sqlserver和mysql两个库上的表在进行同步&#xff0c;sqlserver上的是源表&#xff0c;mysql上是目标表。 我们就把sqlserver上的数据同步到mysql上 mysql 是没有数据的。 sqlserver的三个表只是创建了…

利用Python自动化日常任务

在快节奏的现代生活中&#xff0c;时间就是一切。幸运的是&#xff0c;Python提供了一系列强大的库和工具&#xff0c;可以帮助我们自动化那些乏味且重复的任务&#xff0c;从而释放我们的时间&#xff0c;让我们可以专注于更有创造性和有意义的工作。下面&#xff0c;我们将探…

6、Linux-服务管理、权限管理和授权(sudo权限)

一、服务管理 systemctl list-unit-files&#xff1a;查看服务systemctl start 服务名&#xff1a;启动服务systemctl stop 服务名&#xff1a;关闭服务systemctl restart 服务名&#xff1a;重启服务systemctl status 服务名&#xff1a;查看服务状态systemctl enable 服务名…

BioTech - 药物晶型预测与剂型设计 概述

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://blog.csdn.net/caroline_wendy/article/details/136441046 药物晶型预测与剂型设计是指利用计算机模拟和优化药物分子在固态形式下的结构、性质和稳定性&#xff0c;以及与制剂工艺和质…

Python实现微信电脑版微信支付收款监听及支付回调通知

摘要 为什么要监听收款&#xff1f;那是因为现在还有人在使用微信的收款码、商业码、赞赏码实现免签支付&#xff0c;这类实现方法的最终方案还是监听收款结果。 技术原理 通过Python实时解析微信电脑版控件的文本内容来获取信息。不需要Hook和抓包&#xff0c;也不是走任何…

[DevOps云实践] 跨AWS账户及Region调用Lambda

[DevOps云实践] 跨AWS账户及Region调用Lambda 本文將幫大家理清一下幾個問題: 如何跨不同AWS賬戶,不同Region來調用Lambda? 不同Lambda之間如何互相調用?有時我們希望我們的Lambda脚本能夠運行在多個AWS賬戶中的不同Region下,但是,我們還不希望每個下面都去建立一個運行…

温湿度传感器SHT21

SHT21是一款基于IIC的温湿度传感器&#xff0c;它的引脚及定义如下&#xff1a; 标准的IIC器件&#xff0c;没有其他多余的引脚&#xff0c;应用框图如下&#xff1a; 温度的测量范围是-40到125℃&#xff0c;湿度测量范围0-100%RH&#xff0c;具体参数及采样精度见下图&#x…

HM_2019在面积不变情况下编辑网格

首先&#xff0c;应该保存其形状&#xff0c;计算他的面积。让面积不变作为一个约束&#xff0c;然后进行网格的形变。

【网站项目】154大学生创新创业平台竞赛管理子系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

d2-crud-plus 使用小技巧(二)—— 路由跳转查询

需求 项目中要在a.vue界面点击表格中数据&#xff0c;携带参数跳转到b.vue界面&#xff0c;并进行查询。需要在d2-crud-plus框架下实现。 解决方法 使用插槽将要点击的数据添加上点击事件&#xff0c;在点击事件中添加路由跳转&#xff0c;并携带参数。 在目标界面使用对外…

GIN与Echo:选择正确Go框架的指南

您是否在Go中构建Web应用&#xff1f;选择正确的框架至关重要&#xff01;GIN和Echo是两个热门选择&#xff0c;每个都有其优势和特点。本指南将详细介绍每个框架的特性、速度、社区热度以及它们各自擅长的项目类型。最后&#xff0c;您将能够为您的下一个Web项目选择完美的框架…

C++11常用知识分享(一)【列表初始化 || 简化声明 || 范围for || 左右值 || 可变参数模板】

目录 一. 列表初始化 1&#xff09;用法 2) initializer_list 小节&#xff1a; 二&#xff0c;简化声明 1) &#xff0c;auto 2) &#xff0c;decltype类 3)&#xff0c;nullptr 三&#xff0c;范围for 四&#xff0c;C11后&#xff0c;STL容器变化 五&#xff0c…