(sub)三次握手四次挥手

 TCP的三次握手与四次挥手理解及面试题

0

    序列号seq:占4个字节,用来标记数据段的顺序,TCP把连接中发送的所有数据字节都编上一个序号,第一个字节的编号由本地随机产生;给字节编上序号后,就给每一个报文段指派一个序号;序列号seq就是这个报文段中的第一个字节的数据编号。

    确认号ack:占4个字节,期待收到对方下一个报文段的第一个数据字节的序号;序列号表示报文段携带数据的第一个字节的编号;而确认号指的是期望接收到下一个字节的编号;因此当前报文段最后一个字节的编号+1即为确认号。

    确认ACK:占1位,仅当ACK=1时,确认号字段才有效。ACK=0时,确认号无效

    同步SYN:连接建立时用于同步序号。当SYN=1,ACK=0时表示:这是一个连接请求报文段。若同意连接,则在响应报文段中使得SYN=1,ACK=1。因此,SYN=1表示这是一个连接请求,或连接接受报文。SYN这个标志位只有在TCP建产连接时才会被置1,握手完成后SYN标志位被置0。

    终止FIN:用来释放一个连接。FIN=1表示:此报文段的发送方的数据已经发送完毕,并要求释放运输连接

    PS:ACK、SYN和FIN这些大写的单词表示标志位,其值要么是1,要么是0;ack、seq小写的单词表示序号。

字段

含义

URG

紧急指针是否有效。为1,表示某一位需要被优先处理

ACK

确认号是否有效,一般置为1。

PSH

提示接收端应用程序立即从TCP缓冲区把数据读走。

RST

对方要求重新建立连接,复位。

SYN

请求建立连接,并在其序列号的字段进行序列号的初始值设定。建立连接,设置为1

FIN

希望断开连接。

三次握手过程理解

0

第一次握手:建立连接时,客户端发送SYN包(seq=x)到服务器,并进入SYN_SENT状态,等待服务器确认;SYN:同步序列编号(Synchronize Sequence Numbers)。

第二次握手:服务器收到SYN包,必须确认客户的SYN: ACK(ack=x+1),同时自己也发送一个SYN包(seq=y),即SYN+ACK包,此时服务器进入SYN_RECV状态;

必需理由:

0

第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=y+1),此包发送完毕,客户端和服务器进入ESTABLISHED(TCP连接成功)状态,完成三次握手。

必需理由:如果没有第三次ack会造成资源浪费,       

现在把三次握手改成仅需要两次握手,死锁是可能发生的。作为例子,考虑计算机S和C之间的通信,假定C给S发送一个连接请求分组,S收到了这个分组,并发 送了确认应答分组。按照两次握手的协定,S认为连接已经成功地建立了,可以开始发送数据分组。可是,C在S的应答分组在传输中被丢失的情况下,将不知道S 是否已准备好,不知道S建立什么样的序列号,C甚至怀疑S是否收到自己的连接请求分组。在这种情况下,C认为连接还未建立成功,将忽略S发来的任何数据分 组,只等待连接确认应答分组。而S在发出的分组超时后,重复发送同样的分组。这样就形成了死锁。

0

四次挥手过程理解 

0

第一次挥手:客户端进程发出连接释放报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。

第二次挥手:服务器收到连接释放报文,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号seq=v,此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。

客户端收到服务器的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。

必需理由:一次挥挥手就走太暴力了吧!

第三次挥手:服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。

必需理由:半关闭状态服务端可以继续处理未处理完报文,如果没有也可以立刻同时回复FIN+ACK。这样就没有FIN-WAIT2

第四次挥手:客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2∗∗MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。

服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

必需理由TIME_WAIT在四次挥手中有着不可替代的位置,如果没有TIME-WAIT,主动方就会直接进入CLOSED状态,(假设主动方时客户端,被动方时服务端)这时候如果立即重启客户端使用相同的端口,如果因为网络中种种原因最后一次ACK丢失了,服务端就会重复FIN请求,这时这个FIN就会被重新启动的客户端接收到,或者新启动的客户端向服务端发起请求的时候,因为服务端正在等待最后一次ACK,因此新连接请求发送的SYN就会被服务端认为时请求码错误,服务端就会回复RET重置连接。所以就需要主动方发送最后一次ACK之后进入TIME_WAIT状态,等待2MSL(两个报文最大生命周期),等待这段时间就是为了如果接收到了重发的FIN请求能够进行最后一次ACK回复,让在网络中延迟的FIN/ACK数据都消失在网络中,不会对后续连接造成影响

 常见面试题

如果第三次握手失败:

Server 端

    第三次的ACK在网络中丢失,那么Server 端该TCP连接的状态为SYN_RECV,并且会根据 TCP的超时重传机制,会等待3秒、6秒、12秒后重新发送SYN+ACK包,以便Client重新发送ACK包。

    而Server重发SYN+ACK包的次数,可以通过设置/proc/sys/net/ipv4/tcp_synack_retries修改,默认值为5.

    如果重发指定次数之后,仍然未收到 client 的ACK应答,那么一段时间后,Server自动关闭这个连接。

Client 端

    在linux c 中,client 一般是通过 connect() 函数来连接服务器的,而connect()是在 TCP的三次握手的第二次握手完成后就成功返回值。也就是说 client 在接收到 SYN+ACK包,它的TCP连接状态就为 established (已连接),表示该连接已经建立。那么如果 第三次握手中的ACK包丢失的情况下,Client 向 server端发送数据,Server端将以 RST包响应,方能感知到Server的错误。

【问题1】为什么连接的时候是三次握手,关闭的时候却是四次握手?

答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,"你发的FIN报文我收到了"。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。

【问题2】为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

  

答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假设网络是不可靠的,有可以最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。在Client发送出最后的ACK回复,但该ACK可能丢失。Server如果没有收到ACK,将不断重复发送FIN片段。所以Client不能立即关闭,它必须确认Server接收到了该ACK。Client会在发送出ACK之后进入到TIME_WAIT状态。Client会设置一个计时器,等待2MSL的时间。如果在该时间内再次收到FIN,那么Client会重发ACK并再次等待2MSL。所谓的2MSL是两倍的MSL(Maximum Segment Lifetime)。MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果直到2MSL,Client都没有再次收到FIN,那么Client推断ACK已经被成功接收,则结束TCP连接。

【问题3】为什么不能用两次握手进行连接?

答:3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。

       现在把三次握手改成仅需要两次握手,死锁是可能发生的。作为例子,考虑计算机S和C之间的通信,假定C给S发送一个连接请求分组,S收到了这个分组,并发 送了确认应答分组。按照两次握手的协定,S认为连接已经成功地建立了,可以开始发送数据分组。可是,C在S的应答分组在传输中被丢失的情况下,将不知道S 是否已准备好,不知道S建立什么样的序列号,C甚至怀疑S是否收到自己的连接请求分组。在这种情况下,C认为连接还未建立成功,将忽略S发来的任何数据分 组,只等待连接确认应答分组。而S在发出的分组超时后,重复发送同样的分组。这样就形成了死锁。

【问题4】如果已经建立了连接,但是客户端突然出现故障了怎么办?

TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。


3.CLOSING状态(last-ack最终确认)?

CLOSING状态是指TCP连接关闭过程中的一个状态,它表示客户端发送了FIN分组后等待服务器回复ACK分组之前的状态。

当客户端发送FIN分组请求关闭连接时,它会进入FIN_WAIT_1状态,并等待来自服务器的确认。在收到服务器对于FIN分组的确认后,客户端进入FIN_WAIT_2状态,并等待服务器发送的FIN分组。

当服务器也希望关闭连接时,它会发送一个FIN分组给客户端,并进入CLOSING状态,此时服务器等待客户端发回确认(ACK)分组。当客户端收到来自服务器的FIN分组后,会进入TIME_WAIT状态,并向服务器回送一个确认分组,这样可以确保客户端发送的最后一个ACK分组能够被服务器接收到,从而正确地关闭连接。

总结来说,CLOSING状态是TCP连接关闭过程中的一个短暂阶段,表示客户端收到了来自服务器的FIN分组,正在等待发送确认分组的状态。

如果四次分手中:server端没收到第三次ack,但收到client端发送的数据,server端怎么处理?

如果服务器端没有收到第三次ACK,但是收到了客户端发送的数据,那么服务器会以为丢失了响应并重新发送之前的数据包。这种情况被称为“超时重传”,服务器会认为该数据包已经丢失并重新发送它。如果客户端在此期间已经收到了服务器之前发送的数据包,则客户端将简单地忽略重复的数据包。这是因为TCP协议具有流量控制和序列号机制,可以确保数据的可靠性和正确性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/719040.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(学习日记)2024.03.03:UCOSIII第五节:常用汇编指令+OS初始化+启动任务+任务切换

写在前面: 由于时间的不足与学习的碎片化,写博客变得有些奢侈。 但是对于记录学习(忘了以后能快速复习)的渴望一天天变得强烈。 既然如此 不如以天为单位,以时间为顺序,仅仅将博客当做一个知识学习的目录&a…

双重检验锁

双重检验锁:设计模式中的单例模式,细分为单例模式中的懒加载模式。 单例模式 单例模式:指的是一个类只有一个对象。最简单的实现方式是设一个枚举类,只有一个对象。缺点是当对象还没有被使用时,对象就已经创建存在了…

【扩散模型】生成模型中的Residual Self-Attention UNet 以及 DDPM的pytorch代码

参考: [1] https://github.com/xiaohu2015/nngen/blob/main/models/diffusion_models/ddpm_cifar10.ipynb [2] https://www.bilibili.com/video/BV1we4y1H7gG/?spm_id_from333.337.search-card.all.click&vd_source9e9b4b6471a6e98c3e756ce7f41eb134 TOC 1 UNe…

视黄酸诱导基因-1敲除诱导树突状细胞的不成熟特性并延长异体移植小鼠的存活时间研究【AbMole】

器官移植是一种用于替换因疾病、损伤或其他原因受损的人体器官的医疗程序。尽管器官移植可以挽救生命并显著提高生活质量,但存在供体器官短缺、排斥反应、器官功能障碍、感染和药物副作用等问题。为了提高移植成功率和受体健康,需要有效的免疫策略。树突…

如何使用支付宝沙箱环境本地配置模拟支付并实现公网远程访问【内网穿透】

文章目录 前言1. 下载当面付demo2. 修改配置文件3. 打包成web服务4. 局域网测试5. 内网穿透6. 测试公网访问7. 配置二级子域名8. 测试使用固定二级子域名访问 前言 在沙箱环境调试支付SDK的时候,往往沙箱环境部署在本地,局限性大,在沙箱环境…

数据可视化原理-腾讯-3D网格热力图

在做数据分析类的产品功能设计时,经常用到可视化方式,挖掘数据价值,表达数据的内在规律与特征展示给客户。 可是作为一个产品经理,(1)如果不能够掌握各类可视化图形的含义,就不知道哪类数据该用…

壁炉火焰温和而宁静,警惕火焰凶猛的潜在危害

在寒冷的冬夜,壁炉散发的温暖和闪烁的火焰成为家庭的心灵港湾。然而,我们在享受壁炉带来的温馨时,有时候也要关注火焰的凶猛度,因为它可能引发一系列潜在危害。 首先,壁炉的火焰过于凶猛可能导致空气质量下降。当火焰过…

从零开始手写RPC框架(4)

这一节主要讲述网络传输模块的代码,并且几乎每一行代码都加上了我个人理解的注释,同时也讲述了其中一些以前没见过的函数,和大致的底层运行逻辑。 目录 网络传输实体类网络传输实现基于Socket实现网络传输基于Netty实现网络传输客户端服务端 …

【JavaEE进阶】 Linux常用命令

文章目录 🍃前言🌴ls 与 pwd🚩ls🚩pwd 🎍cd🚩认识Linux目录结构 🍀touch与cat🚩touch🚩cat 🌲mkdir与rm🚩mkdir🚩rm 🎄cp与…

Java基础 - 7 - 常用API(二)

API(全称 Application Programming Interface:应用程序编程接口) API就是Java帮我们已经写好的一些程序,如类、方法等,可以直接拿过来用 JDK8 API文档:Java Platform SE 8 一. Object Object类的作用 Ob…

『Linux从入门到精通』第 ㉓ 期 - 管道

文章目录 💐专栏导读💐文章导读🐧进程间通信的目的🐧如何进行进程间通信🐧进程间通信的分类🐧管道🐦什么是管道🐦管道原理 🐧实例代码🐧管道的特点&#x1f4…

Window系统部署Splunk Enterprise并结合内网穿透实现远程访问本地服务

文章目录 前言1. 搭建Splunk Enterprise2. windows 安装 cpolar3. 创建Splunk Enterprise公网访问地址4. 远程访问Splunk Enterprise服务5. 固定远程地址 前言 本文主要介绍如何简单几步,结合cpolar内网穿透工具实现随时随地在任意浏览器,远程访问在本地…

【24最新版PythonPycharm安装教程】小白保姆级别安装教程

今天,我就来教大家一下,如何去安装Python! 需要博主打包好的一键激活版Pycharm&&Python也可扫下方直接获取 ​ 1 了解Python Python是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum于1989年发明&…

[C++]使用纯opencv去部署yolov9的onnx模型

【介绍】 部署 YOLOv9 ONNX 模型在 OpenCV 的 C 环境中涉及一系列步骤。以下是一个简化的部署方案概述,以及相关的文案。 部署方案概述: 模型准备:首先,你需要确保你有 YOLOv9 的 ONNX 模型文件。这个文件包含了模型的结构和权…

Flutter Gradle下载失败的解决方案

Flutter Gradle可能会由于网络原因下载失败,这个时候我们可以首先下载Gradle,然后再进行配置。具体步骤如下: 第一步:下载对应版本的gradle 可以通过下面地址下载,也可以百度里面搜对应的版本 【极速下载】gradle各版本快速下载地…

【HTML】HTML基础2(一些常用标签)

目录 例子 首先是网页图标 然后是一些常用标签 插入图片 例子 <!DOCTYPE html> <html><head><link rel"icon" href"img/银河护卫队-星爵.png" type"image/x-icon"><meta charset"utf-8"><title>…

如何限制一个账号只在一处登陆

大家好&#xff0c;我是广漂程序员DevinRock&#xff01; 1. 需求分析 前阵子&#xff0c;和问答群里一个前端朋友&#xff0c;随便唠了唠。期间他问了我一个问题&#xff0c;让我印象深刻。 他问的是&#xff0c;限制同一账号只能在一处设备上登录&#xff0c;是如何实现的…

【大厂AI课学习笔记NO.56】(9)模型评测

作者简介&#xff1a;giszz&#xff0c;腾讯云人工智能从业者TCA认证&#xff0c;信息系统项目管理师。 博客地址&#xff1a;https://giszz.blog.csdn.net 声明&#xff1a;本学习笔记来自腾讯云人工智能课程&#xff0c;叠加作者查阅的背景资料、延伸阅读信息&#xff0c;及学…

Python采集学习笔记-request的get请求和post请求

使用http://httpbin.org测试,一个简单的 HTTP 请求和响应服务。(需联网)1.导入requests包 import requests 2.测试get请求 url http://httpbin.org/get par {key1: value1, key2: value2} # 不带参数请求 r1 requests.get(url) # 带参数请求 r2 requests.get(url, paramspa…

甘特图资源视图和任务视图的区别

甘特图(Gantt chart)是一种常用的项目管理工具,用于直观地展示项目的进度和各项任务的时间安排。甘特图包含资源视图和任务视图两种视角。 一个项目的甘特图demo &#xff1a; https://zz-plan.com/share/87f1340286f1343ba5 资源视图主要显示项目中不同资源的分配和利用情况…